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Let {p.(x)} be a system of normalized orthogonal functions in
(a, b) and consider the series
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By the Riesz-Fisher theorem, the series (1) converges in the mean to
a function f(x) in L. As usual we denote by s.(x) and o.(x) the
partial sum and (C,1)-mean of the series (1) respectively. In this
paper we discuss the convergency of
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For the case of trigonometrical system, the former is considered by
Hardy and Littlewood” and the latter by Zygmund®.

As an application of our theory, we shall give an alternative
proof of the Rademacher®-Menchof¥ theorem regarding the almost
everywhere convergence of the series (1).
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which is the required.

For the case of trigonometrical system, we have
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6) A, B, ... are constants, not always the same from one occurrence to another.



