96. Relations between Measure and Topology in some Boolean Space.

By Yoshimiti MIBU.

Mathematical Institute, Nagoya Imperial University. (Comm. by T. TAKAGI, M.I.A., July 12, 1944.)

Let \mathcal{Q} be a bicompact Hausdorff space the closure of whose open set is open. We assume that the class \mathfrak{E} of all the closed-open sets constitutes the base of \mathcal{Q} . \mathfrak{E} is a finitely additive class which contains \mathcal{Q} and the empty set \mathfrak{D} . Let there be defined on \mathfrak{E} a Jordan measure m(E) with the following two conditions:

- 1 $m(\mathcal{Q})=1$, m(E)=0 if and only if $E=\mathfrak{O}$.
- 2 $\lim_{n \to \infty} m(E_n) = m\left((\bigcup_{n=1}^{\infty} E_n)^{\alpha} \right)$ for any ascending sequence $\{E_n\}$ of sets $\in (\mathbb{S}^{1})$.

The purpose of the present note is to discuss the relations between measure and topology in \mathcal{Q} . Our main result is resumed in the theorems 10, 11 and 13 below.

Theorem 1. We have

$$\sum_{n=1}^{\infty} m(E_n) \ge m\left((\bigcup_{n=1}^{\infty} E_n)^{\alpha}\right)$$

for every sequence $\{E_n\}$ of sets $\in \mathfrak{C}$, and the equality holds good if and only if E_n are mutually disjoint. In particular, we have

$$\sum_{n=1}^{\infty} m(E_n) = m(\bigcup_{n=1}^{\infty} E_n)$$

if $\bigcup_{n=1}^{\infty} E_n \in \mathfrak{E}$. Thus the Jordan measure m(E) is countably additive on C.

Definition 1. (of outer measure m^*). For any set $A \subseteq \Omega$, $m^*(A)$ denotes the infimum of m(E) where $E \in \mathfrak{C}$, $E \supseteq A$

Theorem 2.

- (i) $m^*(A) \leq m^*(B)$ if $A \leq B$
- (ii) $m^*(A) = m(A)$ if $A \in \mathfrak{G}$
- (iii) $m^*(A+B) \le m^*(A) + m^*(B)$

(iv)
$$m^*(A) = m^*(A^a)$$

Definition 2. (of inner measure m_*). For any set $A \subseteq \mathcal{Q}$, $m_*(A)$ denotes the supremum of m(E) where $E \in \mathfrak{C}$, $E \subseteq A$.

Theorem 3.

¹⁾ A^{a} , A^{c} and A^{i} respectively denote the closure, the complement and the interior of A.