112. On Fourier Constants.

By Gen-ichirô Sunouchi.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., Oct. 12, 1944.)

G. H. Hardy^D proved the following theorem:

- (A) If $\{a_n\}$ are the Fourier constants of a function of L_p $(p \ge 1)$, then $\{(\sum_{k=1}^n a_k)/n\}$ are also the Fourier constants of a function of L_p . Recently T. Kawata²⁾ has proved a dual form of (A), that is:
- (B) If $\{a_n\}$ are the Fourier sine constants of a function of L_p (p>1), then $\{\sum_{k=n}^{\infty} a_k/k\}$ are also the Fourier sine constants of a function of L_p . Moreover if $\{a_n\}$ are the Fourier sine constants of a function of L_z , then $\{\sum_{k=n}^{\infty} a_k/k\}$ are the Fourier sine constants of a function of L.

In the present note the author considers the case of cosine constants and completes (B) in the following form.

Theorem 1. If $\{a_n\}$ are the Fourier constants of a function L_p (p>1), then $\{\sum_{k=n}^{\infty} a_k/k\}$ are also the Fourier constants of a function of L_p . Moreover if $\{a_n\}$ are the Fourier constants of a function of L_z , then $\{\sum_{k=n}^{\infty} a_k/k\}$ are the Fourier constants of a function of L.

The method of proof is analogous to that of Kawata, but is somewhat delicate.

Proof of the case L_p . It is sufficient to prove the theorem for pure cosine series without constant term, that is $\int_{a}^{\pi} f(x)dx = 0$.

Let

(1)
$$f(x) \sim \sum_{k=0}^{\infty} a_k \cos kx, \quad f(x) \in L_p,$$

(2)
$$g(x) \sim \sum_{k=1}^{\infty} \frac{1}{k} \cos kx,$$

then $g(x) \in L_r$ for all $r \ge 1$ by the Hausdorff-Young theorem.

By Parseval's relation³⁾, we have

(3)
$$\sum_{k=n}^{\infty} \frac{a_k}{k} = \frac{2}{\pi} \int_0^{\pi} f(x)g(x)dx - \frac{2}{\pi} \int_0^{\pi} f(x) \sum_{k=1}^{n-1} \frac{\cos kx}{k} dx.$$

The left-hand side series is summable (C, 1), and further in this case it converges as $f(x) \in L_p$.

¹⁾ G. H. Hardy, Messenger of Math., 58 (1928), 50-52.

²⁾ T. Kawata, Proc. 20 (1944), 218-222.

³⁾ A. Zygmund, Trigonometrical series, (1935), 88.