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1. Introduction. Let (/2, P) be any probability field, and g(t, ),
0 ___< t 1, (oe/2, be any brownian motion1) on (/2, P) i.e. a (real)
stochastic differential process with no moving discontinuity such that
(g(s,,o)-g(t,,o))=O) and (g(s,,,,)-g(t,,o))=ls-tl. In this "note

we shall investigate an integral _/.f(r, ) dg(r, o) for any element

f(t, ) in a functional class S* which will be defined in 2; the
particular case in which f(t, o) does not depend upon has already
been treated by Paley and Wiener).

In 2 we shall give the definition and prove fundamental
properties concerning this integral. In 3 we shall establish three
theorems which give sufficient conditions for integrability. In 4 we
give an example, which will show a somewhat singular property of
our integral.

2. Definition and Properties. For brevity we define the classes
of measurable functions defined on [0, 1] /2" G, S(t0, tl, ..., t), S and
S* respectively as the classes of f(t, ,o) satisfying the corresponding
conditions, as follows,

G" f(r, (), g(r, o), 0 r , are independent of g(a, o)-g(t, ),
t a 1, for any t, g(r, o) being the above mentioned brownian
motion,

S(to, t,, ..., t,), 0=t0 <:tt <... <t,=t :f(t, ,,)eG A L. ([0, 1]xg)
and f(t, )=f($,_,, ), t,_ <__ < , i= 1, 2, ..., n,

S" f(t, ) belongs to S(to, ..., t,) for a system t0, t, ..., t, which
may depend upon f(t, ) in other words S =_ d S(to, t,, ..., t,),

S* f($, ) e G and for any there exists h(, ) e S such that

P{o ;f(t, o)=h(t, o) for any t} > 1-.

At first for f(t, )eS we define the stochastic integral (r, ,o)

,o) (for brevity denote it by I(t, ;f)) as follows"d,g(r,
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1) C.P. Lvy" Thorie de l’addition des variable alatoire, P. 167, 1937, and also
J. L. Doob" Stochastic processes depending on a continuous parameter, Trans., &mer.
Math. Soc. vol. 42, Theorem 3.9.

2) , denotes the mathematical expectation, viz. ’f()=I#
f o)P(d).

3) R.E.A.G. Paley and N. Wiener, Fourier transforms in the complex domain,
Amer. Math. Soc. Coll. Publ. (1934), Chap. IX.

4) means the closure of S with respect to the norm in L.([0,1] #).


