107. On Biorthogonal Systems in Banach Spaces.

By Sitiro HANAI.

Nagaoka Technical College.

(Comm. by S. KAKEYA, M.I.A., Oct. 12, 1944.)

1. Let $\{x_i\}$ be a sequence of elements of a Banach space E and $\{f_i\}$ a sequence of elements of its conjugate space \overline{E} , that is, the space of all bounded linear functionals f(x) defined on E, with norm ||f|| = 1. u. b. |f(x)|.

The system $\{x_i; f_i\}$ (i=1, 2, ...) is called to be biorthogonal if

$$f_i(x_j) = \begin{cases} 1 & \text{for } i = j, \\ 0 & \text{for } i \neq j. \end{cases}$$

We denote by X_k the closed linear subspace of E which consists of all linear combinations of terms of the subsequence of $\{x_i\}$ obtained by taking away only one term x_k from $\{x_i\}$ and of all limits of the combinations. The sequence $\{x_i\}$ is said to be *minimal* if $x_k \in X_k$ for all k.

S. Kaczmarz and H. Steinhaus¹⁾ have proved the following theorem :

Let $\{x_i\}$ be a sequence of elements of the space $L^{(p)}(p \ge 1)$. The necessary and sufficient condition that there exists a sequence $\{f_i\}$ of bounded linear functionals defined on $L^{(p)}$ such that the system $\{x_i; f_i\}$ is biorthogonal is that the sequence $\{x_i\}$ is minimal.

The object of the present paper is to show that the above theorem is valid in the Banach space E and to get the conditions for the existence of $\{x_i\}$ of elements of E such that for a given sequence $\{f_i\}$ of elements of \overline{E} the system $\{x_i; f_i\}$ is biorthogonal and finally to apply the obtained results to a trigonometrical system.

2. Theorem 1. Let $\{x_i\}$ be a sequence of elements of E. The necessary and sufficient condition that there exists a sequence $\{f_i\}$ of elements of \overline{E} such that $\{x_i, f_i\}$ is biorthogonal is that $\{x_i\}$ is minimal.

Proof. Necessity. Suppose that there exists $\{f_i\}$ such that $\{x_i; f_i\}$ is biorthogonal and $x_1 \in X_1$. Then there are sequences of numbers $\{\gamma_k^{(n)}\}$ (n=1, 2, ...) such that $Z_n = \sum_{k=2}^{m_n} \gamma_k^{(n)} x_k$ and $\lim_{n \to \infty} Z_n = x_1$.

Therefore

$$\lim_{n \to \infty} f_1(Z_n) = f_1(x_1) = 1.$$

On the other hand $f_1(Z_n)=0$ for n=1, 2, ..., thus we have arrived at a contradiction.

Sufficiency. If $\{x_i\}$ is minimal, then $x_1 \in X_1$. Since X_1 is a closed linear subspace of E, there exists an $f_1 \in \overline{E}$ such that

¹⁾ S. Kaczmarz and H. Steinhaus: Theorie der Orthogonalreihen, Warszawa, 1935, p. 264.