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1. Let 9 be a compact (=bicompact) Hausdorff space, and F a
closed subset of 2. Let C(2) be the normed ring of all complex-valued
continuous functions on 2, and let C(F) be analogously defined. For
any x eC(2) and ’eC(F), their norms are defined by
max x() and x’ IlF=max,eEl x’(co’) ], respectively.

Then, by Urysohn’s extension theorem, to any x’e C(F) there cor-
x ()=x(’) for any ’ e F. (When Fresponds an x e C(/2) such that

is an essential subset of 2, x() is, of course, not unique). Thus a map-
ping x=(x’) of C(F) into C(2) is defined. The parpose of this paper
is to prove that we can take as a linear ((x’/y’)=(x’)+(y’) and

(ax’)=a(’), where a is a complex number), nultiplicative ((x’y’)=
(x’)(y’)) and isometric (I]to(X’)--(y’)]lg"-]lx’--y’][F) mapping, if and
only if F i a retract of /2 in the sense of K. Borsuk’), i.e. if there
exists a continuous mapping o/=f((o) of 2 onto F such that f((,’)=’
on F.

2. Lemma? Let R be a closed subring) of C(12) containing the
unit element of C(2) and satisfying the following condition"

(*) x() e R implies X(o) e R.)

Then R is equivalentz) to C(12"), where 2" is a certain continuous image
of 12. Conversely, if 2" is a continuous image of 12, then C(12")is
equivalent to some closed subring of C(12) which contains the unit of
C(12) and satisfies the condition (*).

We shall sketch the proof" To any maximal ideal) of R there
corresponds at least one point of 12 and to any point of /2 there cor-
responds one maximal ideal of R. From this follows easily that the
set /2* of all maximal ideals of R, which is topologized by the weak
topology, is a continuous image of 2"12"=g(12). Then R is equivalent
to C(9") by the correspondence x(o)-x*(*), where x*(g())=x(o).
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