104 [Vol. 21,

19. Some Metrical Theorems on Fuchsian Groups.

By Masatsugu Tsuji.

Mathematical Institute, Tokyo Imperial University. (Comm. by S. KAKEYA, M.I.A., Feb. 12, 1945.)

1. Let E be a measurable set in |z| < 1. We define its hyperbolic measure $\sigma(E)$ by $\sigma(E) = \iint_E \frac{dxdy}{(1-|z|^2)^2} (z=x+iy)$. Let e be a linear set on a rectifiable curve C in |z| < 1, then its hyperbolic linear measure $\lambda(e)$ is defined by $\lambda(e) = \int_e \frac{|dz|}{1-|z|^2}$.

Let G be a Fuchsian group of linear transformations, which make |z| < 1 invariant and D_0 be its fundamental domain, containing z = 0 and z_n be equivalents of $z_0 = 0$. For any z in |z| < 1, we denote its equivalent in D_0 by (z). Let $E(\theta)$ be the set of points $(re^{i\theta})$ in D_0 , which are equivalent to points on a radius $z = re^{i\theta} (0 \le r < 1)$ of |z| = 1. In may formar paper¹, I have proved:

Theorem 1. (i) If $\sum_{n=0}^{\infty} (1-|z_n|) = \infty$, then $E(\theta)$ is everywhere dense in D_0 for almost all $e^{i\theta}$ on |z|=1, (ii) If $\sum_{n=0}^{\infty} (1-|z_n|) < \infty$, then $\lim_{n \to \infty} |(re^{i\theta})| = 1$ for almost all $e^{i\theta}$ on |z|=1.

In this paper, we will prove the following theorem, which is a precision of Theorem 1 (i).

Theorem 2. Suppose that $\sigma(D_0) < \infty$. Let \wedge be a set in D_0 , which is measurable in Jordan's sense. Let $g: z = te^{i\theta}(0 \le t < 1)$ be a radius of |z| = 1 and l be a segment $(0 \le t \le r)$ on g of length r, whose hyperbolic length be L and $L(\wedge)$ be the hyperbolic measure of the set of t-values on (0,r), such that $(te^{i\theta}) \in \wedge$. Then there exists a set e_0 of measure zero on a unit circle U: |z| = 1, which does not depend on \wedge , such that if $e^{i\theta} \in U - e_0$, then for any \wedge ,

$$\lim_{L\to\infty} \frac{L(\Lambda)}{L} = \frac{\sigma(\Lambda)}{\sigma(D_0)}.$$
 (1)

Proof. We consider D_0 as a Riemann manifold F of constant negative curvature with $ds=\frac{|dz|}{1-|z|^2}$ and equivalent points are considered as the same point of F. Let z=x+iy be any point of D_0 . We associate a direction φ at z, which makes an angle φ with the real axis. Then the line elements (z,φ) $(z\in D_0,\ 0\le \varphi\le 2\pi)$ constitute a phase space $\mathcal Q$, which is a product space of D_0 and a unit circle $U:\ \mathcal Q=D_0\times U$ and the volume element $d\mu$ in $\mathcal Q$ is defined by $d\mu=\frac{dxdyd\varphi}{(1-|z|^2)^2}$, so that $\mu(\mathcal Q)=2\pi\sigma(D_0)<\infty$.

M. Tsuji: Theory of conformal mapping of a multiply connected domain, III. Jap. Journ. Math. 19 (1944).