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Regular and Stable Points in Dirichlet Problem
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Consider a subregion M of Caratheodory type
of the extended Euclidean space R’=R’U
{0} of dimension d = 2, i.e. M is a subregion of
R’ such that the boundary M of M is contained
in R® and 0M = 0M. A sequence (M,),» , of
subregions M, of R’ is referred to as a squeezer
of M if M;> M,,, © M for every i =1 and
Niz=1M, = M. For any f € C(R") we denote by
H}” the harmonic Dirichlet solution for the
boundary function f| ®M on M obtained by the
Perron-Wiener-Brelot method (cf. e.g. [4]). It is
known as the Wiener type theorem that the
sequence (H;"™),~, converges pointwise on M and
locally uniformly on M for any f € C(R? and
for any squeezer (M,);,~, of M. It is convenient
to introduce the notation

H'(2) :=lim H"(@) (z< i)

oo
which is harmonic on M and depends only on
f|1OM and M independent of the _choice of the
squeezer (M,);>,. The function H,M is sometimes
referred to as the external solution of the Dirich-
let problem for the domain M with the boundary
function f and also given by

(1) H"(z) = j; @ dBiee. ),

where ¢, is the Dirac measure with its support at
x and B denotes the balayage operation for the
set M® (cf. [6, §5 in Chap. V]). The Dirichlet
problem is said to be stable inside M (stable in M,
resp.) if H)' = H on M (if (H),5, converges
uniformly to f on OM, resp.). The stability in M
implies the stability inside M. In particular, the
stability in M is closely related to the harmonic

approximation question (cf. e.g. [6], [3], [1], etc.).
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To judge the stability for concrete regions it is
convenient to localize the stability. In his cele-
brated paper [5] Keldysh introduced the follow-
ing notion: a boundary point y € dM is said to
be a stable point if H;w(y) = f(y) for every f €
C(R?%. A point y € dM which is not a stable
point is termed as an unstable point. In view of (1)
it is readily seen that y € 0M is a stable point if
and only if y is a regular point of the set M° in
the sense of [6, Chap. V.

In terms of stable points Keldysh [5] showed
the following: the Dirichlet problem is stable in-
side M if and only if the set of all unstable
points in O0M is of harmonic measure zero rela-
tive to M ; the Dirichlet problem is stable in M
if and only if every boundary point in M is
stable. As for the relation of stability of bound-
ary points to the regularity (cf. e.g. [4]) of them,
Keldysh [5] proved that a stable boundary point
¥y € OM is automatically a regular boundary
point for the Dirichlet problem on M but there is
an example (i.e. the so called Keldysh ball (cf. no.
12 below)) indicating that the converse of the
above is not true. There are many handy geomet-
ric criterion for the regularity and therefore it
will be usefull to give a practical geometric con-
dition under which the regularity implies the sta-
bility for boundary points. The purpose of this
paper is to give such an easily applicable condi-
tion. Roughly speaking (cf. no. 3 below for pre-
cise definition), a boundary point ¥y € 0M is said
to be graphic if one of the following two condi-
tions is satisfied: there exist a neighborhood U of
y, a Cartesian coordinate z = (z', - - -, z°7",
z%) = (2, 2°), and a continuous function ¢(z’)
of x’ such that (0M) N U is represented as the
graph of the function z° = ¢(z") and M N U is
situated on only one side of the graph; there exist
a neighborhood U of y, a polar coordinate (7, &)
(r=>0,|&|=1), and a continuous function
¢ =20 of & such that (M) N U is repre-
sented as the graph of the function » = ¢ (&) and
M N U is situated on only one side of the graph.



