# 16. A Table of the Dimensions of the Extended Hilbert Modular Type Cusp Forms 

By Hirofumi Ishikawa<br>Department of Mathematics, College of Arts and Sciences, Okayama University (Communicated by Shokichi Ifanaga, m. J. a., Feb. 13, 1990)

1. Introduction and the table. For a square-free positive number $D$, let $k$ be a real quadratic number field $\boldsymbol{Q}(\sqrt{D})$. Let $\mathfrak{o}, U$ and $U^{+}$be the ring of integers in $k$, the group of units in 0 and the group of all totally positive units. The extended Hilbert modular group is defined as follows

$$
\hat{\Gamma}=\left\{\gamma \in G L_{2}(\mathfrak{0}) ; \operatorname{det}(\gamma) \in U^{+}\right\} /\left\{\left[\begin{array}{c}
\varepsilon,  \tag{1}\\
0, \varepsilon
\end{array}\right] ; \varepsilon \in U\right\} .
$$

Hausmann investigated the fixed points of $\hat{\Gamma}$ in [1]. When $k$ has a unit of negative norm, $\hat{\Gamma}$ coincides with the ordinary Hilbert modular group $\Gamma$. We consider the space $\hat{S}(D)$ of the cusp forms of weight two with respect to $\hat{\Gamma}$ in $H^{2}$ ( $H$ being a complex upper half plane).

For the ordinary Hilbert modular group, we have already given a dimension table in [5] of which this note is a continuation. We tabulate the dimension of $\hat{S}(D)$ for a square-free $D$ and $1<D<1000$. In the following table, the number $D$ is given by

$$
\begin{equation*}
D=i+j \quad(i=\text { row number, } j=\text { column number }) . \tag{2}
\end{equation*}
$$

When the mark '-' appears after a figure, $\boldsymbol{Q}(\sqrt{D})$ has a unit of negative norm. The mark '**' means that $D$ is not square-free. To calculate this table, we used ACOS-6 computer system in Okayama University Computer center.
2. The method of the computation. From now on, we will only treat with the case of $\hat{\Gamma} \neq \Gamma$. For a square-free divisor $w$ of the discriminant $d_{k}$ of $k$, let $\Gamma_{w}$ be the subgroup of $P L_{2}(k)$ generated by $\Gamma$ and the set of elements $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\bmod k^{x}\right)$ such that $a, b, c, d \in(w)^{1 / 2}, a d-b c=w$, where $(w)^{1 / 2}$ is an ideal whose square equals $(w)$. When $\tilde{w}$ is a square-free part of $d_{k} / w, \Gamma_{w}=\Gamma_{\tilde{w}}$. There exists some $w$ such that $\Gamma_{w}=\hat{\Gamma}$.

By virtue of [1], [3], we get
Theorem. Let $w$ be a divisor of $d_{k}$ satisfying $\Gamma_{w}=\hat{\Gamma}$. The dimension of $\hat{S}(D)$ is given by

$$
\begin{equation*}
\operatorname{dim} \hat{S}(D)=t_{0}+t_{1}+t_{2}-1 \tag{3}
\end{equation*}
$$

Each term can be written as follows.

$$
\begin{equation*}
t_{0}=(1 / 4) \zeta_{k}(-1) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
t_{1}=a(D, w) h(-D)+b(D, w) h(-3 D)+c(D, w) h(-w) h(-\tilde{w}) \tag{5}
\end{equation*}
$$

