10. A Remark on Exponentially Bounded C-semigroups

By Isao MIYADERA and Naoki TANAKA Department of Mathematics, Waseda University

(Communicated by Kôsaku Yosida, M. J. A., Feb. 13, 1990)

1. Introduction. Let X be a Banach space with norm $\|\cdot\|$. We denote by B(X) the set of all bounded linear operators from X into itself.

Let C be an injective operator in B(X). A family $\{S(t); t \ge 0\}$ in B(X) is called an *exponentially bounded C-semigroup* (hereafter abbreviated to C-semigroup) on X, if

(1.1) S(s+t)C = S(s)S(t) for $s, t \ge 0$ and S(0) = C,

(1.2) $S(\cdot): [0, \infty) \rightarrow X$ is continuous for $x \in X$,

(1.3) there are $M \ge 0$ and $a \ge 0$ such that $||S(t)|| \le Me^{at}$ for $t \ge 0$.

The generator A of a C-semigroup $\{S(t); t \ge 0\}$ on X is defined by

(1.4)
$$\begin{cases} D(A) = \{x \in X; \lim_{t \to 0^+} (S(t)x - Cx)/t \in R(C)\} \\ Ax = C^{-1} \lim_{t \to 0^+} (S(t)x - Cx)/t & \text{for } x \in D(A), \end{cases}$$

where R(C) denotes the range of C. It is known ([6, Proposition 1.1]) that (1.5) A is a closed linear operator in X and $A = C^{-1}AC$.

The purpose of this note is to prove

Theorem 1. The following statements are equivalent.

(I) A is the generator of a C-semigroup on X.

(II) (a₁) A is a closed linear operator in X satisfying $C^{-1}AC = A$.

(a₂) There exists a Banach space Σ with norm $N(\cdot)$ such that $R(C) \subset \Sigma \subset X$, $||x|| \leq M_1 N(x)$ for $x \in \Sigma$, $N(x) \leq M_2 ||C^{-1}x||$ for $x \in R(C)$ and the part of A in Σ is the generator of a semigroup of class (C_0) on Σ , where M_i , i=1, 2, are nonnegative constants.

Corollary 2. Let A be a closed linear operator in X, $c \in \rho(A)$ (the resolvent set of A) and let $n \geq 0$ be an integer. Then the following statements are equivalent.

(I') A is the generator of an n-times integrated semigroup on X.

(II') A is the generator of a C-semigroup on X with $C=R(c; A)^n$, where $R(c; A)=(c-A)^{-1}$.

(III') There exists a Banach space Σ with norm $N(\cdot)$ such that $D(A^n) \subset \Sigma \subset X$, $||x|| \leq M_1 N(x)$ for $x \in \Sigma$, $N(x) \leq M_2 \Sigma_{k=0}^n ||A^k x||$ for $x \in D(A^n)$ and the part of A in Σ is the generator of a semigroup of class (C_0) on Σ , where M_i , i=1, 2, are nonnegative constants.

This corollary improves upon [4, Corollary 5.3].

2. Proofs. Let $\{S(t); t \ge 0\}$ be a *C*-semigroup on *X* satisfying (1.3) and let b > a. We define a linear subset Σ of *X* and a norm $N(\cdot)$ on Σ by (2.1) $\Sigma = \{x \in X; C^{-1}S(t)x \text{ is continuous in } t \ge 0 \text{ and } \lim_{t \to \infty} e^{-bt} ||C^{-1}S(t)x|| = 0\},$ (2.2) $N(x) = \sup_{t \ge 0} e^{-bt} ||C^{-1}S(t)x||$ for $x \in \Sigma$,