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1. Introduction. Let x=(x,, «,, ---,x,) be a vector in R* and D a
region contained in R". Let f(x) be a real-valued nonlinear function
defined on D. Define an n-dimensional vector Vf(x) and an nXn matrix
H(x) by

Vf(x)=@0f(x)/dx,) (1=isn)
and

H(x)=@f(x)]ox 0w) A<, k<n).
For a vector x, we shall use the norm defined by

n 1/2
lol=(322)"
The Euclidean norm and the spectral norm of an nXn matrix A=(a,),
denoted by ||A| and ||A||,, are defined as

n n 1/2
141=(25 2 o)
=1 j=1
and
”A”s':'zl/za

respectively, where 2 is the maximum eigenvalue of A*A and A* is the
transposed matrix of A.

Throughout this paper, we shall assume the following three conditions.

(A.1) f(x) is two times continuously differentiable on D.

(A.2) There exists a point Z € D satisfying V f(x)=0.

(A.8) The nXn symmetric matrix H(%) is positive definite.
Let U(m; 8)={x; ||x—7||<3} be a neighbourhood of z.

The following well-known theorem gives a sufficient condition for
finding a local minimum of f(x).

Theorem 1 ([8, Theorem 8.3]). In addition to conditions (A.1)-(A.3),
suppose that the following condition (A.4) holds.

2
IH@)|,

Under conditions (A.1)-(A.4), there exists a neighbourhood U(% ; d,) C D
such that, for arbitrary x® e U(Z; 5,),

2k a8 k—>o0,

where the x* are generated by the gradient method
(1.1) 2ED =g® o f(2%).

The purpose of this paper is to show Theorem 2 by considering an

(A.4) «ais a constant satisfying 0<a<



