85. On the Existence of Polyharmonic Functions in Lebesgue Classes

By Yoshihiro MIZUTA

Faculty of Integrated Arts and Sciences, Hiroshima University

(Communicated by Kôsaku Yosida, M. J. A., Oct. 13, 1986)

For a domain D in the *n*-dimensional euclidean space \mathbb{R}^n , we denote by $H_m(D)$ the class of all functions polyharmonic of order m in D. We say that a subspace \mathcal{H} of $H_m(D)$ is non-trivial if it has an element which is not extended to a function polyharmonic of order m in \mathbb{R}^n . Our aim in this note is to find a condition for \mathcal{H} to be non-trivial. This problem is closely related to the removable singularities for polyharmonic functions (see Adams-Polking [1], Harvey-Polking [3], [4], Maz'ja-Havin [5], Mizuta [7]).

The Bessel capacity of index (α, p) of a set E is defined by

$$B_{\alpha,p}(E) = \inf \int |f(y)|^p \, dy,$$

where the infimum is taken over all nonnegative measurable functions f such that $g_{\alpha}*f(x) \ge 1$ for all $x \in E$, g_{α} being the Bessel kernel of order α (cf. Meyers [6]).

Theorem 1. Let *m* be a positive integer, $1 \le p \le \infty$, 1/p+1/q=1 and *D* be a domain in \mathbb{R}^n .

(i) If $B_{2m,p}(R^n-D)=0$, then $H_m(D)\cap L^q(D)=\{0\}$.

(ii) If $2mp \leq n$ and $B_{2m,p}(R^n - D) > 0$, then $H_m(D) \cap L^q(D)$ is non-trivial.

(iii) If 2m-n/p is a positive number which is not an integer and R^n-D contains at least two points, then $H_m(D) \cap L^q(D)$ is non-trivial.

(iv) If 2m-n/p is a positive integer and $\mathbb{R}^n - D$ contains three distinct points x_1, x_2, x_3 such that $2x_2 = x_1 + x_3$, then $H_m(D) \cap L^q(D)$ is non-trivial.

Proof. Statement (i) is an easy consequence of [1; Theorem B] and the fact that $H_m(\mathbb{R}^n) \cap L^q(\mathbb{R}^n) = \{0\}$.

Assume that the conditions in (ii) are satisfied. Then we can find mutually disjoint compact subsets $K_1, K_2 \subset \mathbb{R}^n - D$ such that $B_{2m,p}(K_i) > 0$ for i=1,2. By [6; Theorem 16], there exist nonnegative measures μ_1, μ_2 such that the support of μ_i is included in $K_i, \mu_i(K_i)=1$ and $g_{2m}*\mu_i \in L^q(\mathbb{R}^n)$ for each *i*. Consider the function

$$u(x) = \int |x-y|^{2m-n} d\mu_1(y) - \int |x-z|^{2m-n} d\mu_2(z).$$

Since $g_m * \mu_i \in L^q(\mathbb{R}^n)$, $u \in L^q_{loc}(\mathbb{R}^n)$. Further, noting that $u(x) = O(|x|^{2m-n-1})$ as $|x| \to \infty$, we can prove that $u \in L^q(\mathbb{R}^n)$. Clearly, $u \in H_m(D)$ and u is not extended to a function polyharmonic of order m in \mathbb{R}^n . Thus assertion (ii) is proved.