62. Proof of Masser's Conjecture or the Algebraic Independence of Values of Liouville Series

By Kumiko NISHIOKA

Department of Mathematics, Nara Women's University

(Communicated by Shokichi IYANAGA, M. J.A., June 10, 1986)

Let $f(z) = \sum_{k=1}^{\infty} z^{k!}$. Then $f(z)$ converges in $|z| < 1$. If α is an algebraic number with $0<|\alpha|<1$, then $f(\alpha)$ is a transcendental number. Masser conjectured that if $\alpha_1, \dots, \alpha_n$ are algebraic numbers with $0<|\alpha_i|<1$ (1 $\leq i$) $\leq n$) and no α_i/α_j ($1 \leq i < j \leq n$) is a root of unity, then $f(\alpha_1), \dots, f(\alpha_n)$ are algebraically independent. In $[2]$, the author proved the *p*-adic analogue of the conjecture, and in [3], settled the conjecture for $n=3$ in complex case. In this paper we shall prove the following theorem by using Evertse's Theorem 1 in [1].

Theorem. Suppose $\alpha_1, \dots, \alpha_n$ are algebraic numbers with $0 \leq |\alpha_i| \leq 1$ $(1 \leq i \leq n)$ and no α_i/α_j $(1 \leq i < j \leq n)$ is a root of unity. Then $f^{(1)}(\alpha_i)$ $(1 \leq i$ $\leq n, 0 \leq l$) are algebraically independent, where $f^{(l)}(z)$ denotes the l-th derivative of $f(z)$.

In what follows, K will denote an algebraic number field including $\alpha_1, \dots, \alpha_n$. By a prime on K we mean an equivalence class of non-trivial valuations on K. We denote the set of all primes on K by S_K and the set of all infinite primes on K by S_{∞} . For every prime v on K lying above a $\text{prime}\; p \; \text{on}\; \bm{Q}, \text{ we choose a valuation } \| \cdot \|_v \; \text{such that} \ \|\; \alpha \|_v = |\alpha|_p^{\llbracket K_v \colon \bm{q}_{p} \rrbracket} \quad \text{ for all } \alpha \in \bm{Q}.$

$$
\parallel \alpha \parallel_{v} = \mid \alpha \!\mid^{\! [K_{v}:\;{\bm Q}_p]}_{p} \qquad \text{for all } \alpha \in {\bm Q}.
$$

Then we have the product formula:

$$
\prod_{v\in S_K} ||\alpha||_v=1 \qquad \text{for all } \alpha\in K, \ \alpha\neq 0.
$$

For $X{=}(x_{0}: x_{1}: \cdots : x_{n}) \in P^{n}(K)$, put

$$
H_K(X) = H(X) = \prod_{v \in S_K} \max (||x_v||_v, ||x_1||_v, \cdots, ||x_n||_v).
$$

By the product formula, this height is well-defined. Put $h_K(\alpha) = h(\alpha) = H(1 : \alpha)$ for $\alpha \in K$.

Then so-called fundamental inequality holds,

$$
-\log h(\alpha) \leq \sum_{v \in S} \log \|\alpha\|_v \leq \log h(\alpha) \qquad \text{for } \alpha \in K, \ \alpha \neq 0,
$$

where S is any set of primes on K .

Let S be a finite set of primes on K, enclosing S_{∞} , and c, d be constants with $c>0$, $d\geq 0$. A projective point $X \in P^{n}(K)$ is called (c, d, S) -admissible if its homogeneous coordinates x_0, x_1, \dots, x_n can be chosen such that

(i) all x_k are S-integers, i.e. $||x_k||_{v} \le 1$ if $v \in S$

and

(ii)
$$
\prod_{v \in S} \prod_{k=0}^n ||x_k||_v \leq c \cdot H(X)^d.
$$