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Let f()=>7..72*". Then f(z) converges in|z|<1. If « is an algebraic
number with 0<|a|<1, then f(«) is a transcendental number. Masser
conjectured that if «,, - - -, «, are algebraic numbers with 0<|e;|<1 (11
=n) and no «,/a; 1<i<j<n) is a root of unity, then f(a,), ---, f(a,) are
algebraically independent. In [2], the author proved the p-adic analogue
of the conjecture, and in [3], settled the conjecture for n=38 in complex
case. In this paper we shall prove the following theorem by using Evertse’s
Theorem 1 in [1].

Theorem. Suppose a,, - - -, a, are algebraic numbers with 0<|a,|<1
AZi<n) and no a;/a; (1<i<j<n) is a root of unity. Then fP(a;) A=14
<n, 01 are algebraically independent, where f(z) denotes the l-th
derivative of f(z).

In what follows, K will denote an algebraic number field including
a, - ++,a, By aprime on K we mean an equivalence class of non-trivial
valuations on K. We denote the set of all primes on K by S and the set
of all infinite primes on K by S.. For every prime v on K lying above a
prime p on @, we choose a valuation || - ||, such that

| ell, =] e |Gv: @21 for all @ € Q.
Then we have the product formula :
];[S lell,=1 for all « € K, a+0.

For X=(x,: ,: --- : z,) e P(K), put
HK(X)':H(X):ngKmaX (”xollv’ “xl”v’ Tty ”xn”v)'

By the product formula, this height is well-defined. Put
hg(a)=h(@)=H(1 : «) for ¢ € K.
Then so-called fundamental inequality holds,
—log h(@) < Z}g log |||, <log h(a) for e ¢ K, a0,
vE

where S is any set of primes on K.

Let S be a finite set of primes on K, enclosing S.., and ¢, d be constants
with ¢>0, d=>0. A projective point X ¢ P*(K) is called (¢, d, S)-admissible
if its homogeneous coordinates x,, x,, - - -, ¢, can be chosen such that

(i) all x, are S-integers, i.e. ||z;],<1if v &S
and

(i) [T 2]l <e-HX)".

vES k=0



