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We stated in our previous paper (Yamazaki [6]) the L?-boundedness
of pseudo-differential operators with non-smooth symbols satisfying non-
classical estimates. A proof will be given in the forthcoming paper
(Yamazaki [7]).

On the other hand, Bourdaud [1] and Nagase [4] generalized the L?-
boundedness theorem of Coifman-Meyer [2] and Muramatu-Nagase [3] on
the classical symbols, by considering the combined effect of the z-regularity
and the &-growth of the symbols.

Here we consider a similar effect where the symbols satisfy non-classi-
cal estimates. Our main theorem is an improvement of Theorem 4 of [7].

1. Notations and definitions. Let n(1), - - -, n(N) be positive integers.
We put n=n1)+---+n(N) and

Ap)={leN; n(D)+ - - +np—-D+1=I<n@)+ - - - +0@)}
for v=1, .-, n.

We regard R"as R*" X - - - X R*™, and writex e N*as x= (@, ..., 2™),
where £ =(2,);c40). We also give a weight M=M®, ..., M™) to the
coordinate variables of R®, where each M®=(m,),c,,, satisfies the condi-
tion min; ¢, m,=1.

Next, for every v=1, ---, N, we define a function [yl, of y=W) c10)
€ R with values in R*={t; £=0} as follows. We put [0],=0, and if y=+0,
let [y], denote the unique positive root of the equation >, ., t ™yi=1
with respect to ¢.

Further, for v=1,2, ---, N and y € R"®, let 4" denote the difference
of the first order with respect to the v-th part of the coordinate variables;
that is, we put

| AP L@)=F @, -, 80—y, -+, 2= @)
for a function f(x) on R*. We also fix a positive number L.

" Now we introduce a notion to state our main theorem.

Definition. We call a family of functions {w,(s;; ), w(sy, 8o 5 &y t2),
<oy on(8yy Ssy o0y Sy by By - ¢ -, Ty)} @ multiple modulus of growth and con-
tinuity if it satisfies the following four conditions:

1) For every v, the function w,(s, ---,s,; t;, - -+, t,) is a function on
(R*)* into R*, and is monotone-increasing and concave with respect to
each t,.



