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1. Introduction. We consider the potential theory for recurrent
Markov processes introduced by T. Ueno [4]. He studied a pair of meas-

ghures/ and/ satisfying /(.)=/h(.),/(.) /, (.) where h(x ) is
the hitting measure to the set K. In this paper we prove that in the sym-
metric case the measure , multiplied/ by the Ueno capacity is the equi-
librium measure on KL. Further we show that the equilibrium
potential induced by , is the hitting probability for K before attaining to
L. We anticipate that such a pair of measures/ and/: is a new proba-
bilistic characterization of the equilibrium measure.

2. Preliminaries. We refer the reader to [2] for all terminology and
notation not explicitly defined here. Let R be a separable Hausdorff locally
compact space containing at least two l>ints and satisfying

(R.1) For each point x e R, we can take a cvuntable base of neighbor-
hoods of x consisting of arcwise connected open sets,

(R.2) R is connected.
We denote by B the topological Borel field of subsets of R. For a set A e B
and a path function X(t) from [0, c) to R, a is defined by

a=in {t>=O]X(t)e A}, if such t exists,
c, otherwise.

We denote by _, the smallest Borel field of subsets of the sample space W
containing {w IX(t, w) e A} for all A e B and t_>_0. Let {P(.), x e R} be a
system of probability measures on satisfying

(P.1) Px(E) is a B-measurable function o x for each E e _,
(P.2) P({w]X(O, w)=x})=l for each x e R,
(P.3) quasi-left continuity,
(P.4) Markov property.

In order to study a broad class of recurrent Markov process Ueno [4]
introduced the following assumptions (X.1)(X.5) which we follow.

(X.1) Recurrence" P(X(t) e A for some 0tc)=l for any x e A,
AeB.

We define the hitting measure h(x,.) for the set A e B by
ha(x, E)=Px(X(a) e E, ao), x e R, E e B.

(X.2) For any continuous function f on A,

hf(x)=; ha(x, dy)f(y)

is continuous in A, where A is a closed set in R containing an inner point.


