65. A Construction of Lie Algebras and Lie Superalgebras by Freudenthal-Kantor Triple Systems. I

By Yoshiaki KAKIICHI

Department of Mathematics, Faculty of Engineering, Toyo University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1985)

- Introduction. In our previous paper [3], we showed that from a two-dimensional associative triple system W and any generalized Jordan triple system U(-1,1) of second order (due to I. L. Kantor [4]) we can make a generalized Jordan triple system $W \otimes U(-1, 1)$ of second order which induces the Lie triple system, and that we have a Lie algebra as a standard embedding of the Lie triple system. In this paper, it is shown that Lie algebras and Lie superalgebras can be also constructed by Freudenthal-Kantor triple system $U(\varepsilon, \delta)$ ($\varepsilon = \pm 1, \delta = \pm 1$) which becomes a generalized Jordan triple system of second order in case $\varepsilon = -1$, $\delta = 1$. We can make, namely, from the same associative triple system W as in [3] and any Freudenthal-Kantor triple system $U(\varepsilon,\delta)$ a Freudenthal-Kantor triple system $W \otimes U(\varepsilon, \delta)$ to which we can associate a Lie algebra and a Lie superalgebra as a standard embedding of a Lie triple system $W \otimes U(\varepsilon, \delta) \oplus$ $\overline{W \otimes U(\varepsilon, \delta)}$, where $\overline{W \otimes U(\varepsilon, \delta)}$ is an isomorphic copy of $W \otimes U(\varepsilon, \delta)$. We assume that any vector space considered in this paper is finite-dimensional and the characteristic of the base field Φ is different from 2 or 3. author wishes to express his hearty thanks to Prof. K. Yamaguti for his kind advice and encouragement.
- 2. A triple system A with a trilinear product $\{abc\}$ is called an associative triple system (ATS) if $\{ab\{cde\}\}=\{a\{bcd\}e\}=\{abc\}de\}=\{a\{dcb\}e\}$ for all elements $a, b, c, d, e \in A$ [6].

Let W be a two-dimensional triple system which has a basis $\{e_1, e_2\}$ such that

where α , $\beta \in \Phi$. Then W is a commutative ATS and is also a Jordan triple system.

In the ATS W, we have

$$(2) l(a, b)l(c, d) = l(c, d)l(a, b),$$

(3)
$$l(a, b)l(c, d) = l(l(a, b)c, d) = l(c, l(b, a)d),$$

where $l(a, b)c = \{abc\}$, for $a, b, c, d \in W$.

A Freudenthal-Kantor triple system (FSK) $U(\varepsilon, \delta)$ is a vector space with a triple product $\{xyz\}$ satisfying

$$[L(x, y), L(u, v)] = L(L(x, y)u, v) + \varepsilon L(u, L(y, x)v),$$