60. Confluent Hypergeometric Functions on an Exceptional Domain

By Shōyū NAGAOKA Department of Mathematics, Kinki University (Communicated by Shokichi IYANAGA, M. J. A., June 12, 1984)

In [3], G. Shimura studied the generalized confluent hypergeometric functions on tube domains of several types. A motive of his study can be seen in the application to the Eisenstein series as developed in his recent paper [4]. In this paper, we shall describe analogous results in the case of tube domains constructed from Cayley's octonion (which includes the case of exceptional simple tube domain).

We denote by \mathbb{S}_R the real Cayley algebra, and we fix the standard basis (e.g. cf. [2]). For each integer m $(1 \le m \le 3)$, we put $\kappa(m) = 4m$ -3. We define a vector space $\mathfrak{J}_R^{(m)}$ over R by $\mathfrak{J}_R^{(m)} = \{x \in M_m(\mathbb{S}_R) | {}^t \bar{x} = x\}$, where the bar denotes the Cayley conjugation. We supply $\mathfrak{J}_R^{(m)}$ with a product by $x \circ y = (1/2)(xy + yx)$, with this product, $\mathfrak{J}_R^{(m)}$ becomes a real Jordan algebra. When m = 3, $\mathfrak{J}_R^{(m)}$ is called the exceptional Jordan algebra (cf. [1]). If $x = (x_{ij}) \in \mathfrak{J}_R^{(m)}$, we define tr $(x) = \sum x_{ii} \in R$ and define an inner product (,) on $\mathfrak{J}_R^{(m)}$ by $(x, y) = \operatorname{tr} (x \circ y)$. Moreover, we define a polynomial function det on $\mathfrak{J}_R^{(m)}$ as follows. When m = 3,

 $\det(x) = \prod_{i=1}^{3} x_{ii} - x_{11} N(x_{23}) - x_{22} N(x_{13}) - x_{33} N(x_{12}) + T((x_{12} x_{23}) \bar{x}_{13}),$

where $N(a) = a\bar{a} = \bar{a}a$, $T(a) = a + \bar{a}$ $(a \in \mathbb{G}_R)$. In the case m=2, we define as det $(x) = x_{11}x_{22} - N(x_{12})$. We denote by \mathfrak{R}_m the set of squares $x \circ x$ of elements of $\mathfrak{F}_R^{(m)}$, and by \mathfrak{R}_m^+ , the interior of \mathfrak{R}_m ; then \mathfrak{R}_m^+ is a convex open cone in $\mathfrak{F}_R^{(m)}$. \mathfrak{R}_3^+ is called the exceptional cone. Identifying $C^{m_{\mathfrak{E}}(m)}$ with $\mathfrak{F}_{\mathfrak{C}}^{(m)} = \mathfrak{F}_{\mathfrak{R}}^{(m)} \otimes_{\mathfrak{R}} \mathfrak{C}$, we define a tube domain H_m by $H_m = \{x + iy | x \in \mathfrak{F}_{\mathfrak{R}}^{(m)}, y \in \mathfrak{R}_m^+\}$. Then H_3 is the exceptional tube domain of type E_7 (cf. [1]) and H_1 is the complex upper-half plane. We define a Euclidean measure dx on $\mathfrak{F}_{\mathfrak{R}}^{(m)}$ by viewing $\mathfrak{F}_{\mathfrak{R}}^{(m)}$ as $\mathfrak{R}^{m_{\mathfrak{E}}(m)}$. Now we define the generalized gamma function $\Gamma_m(s)$ associated with the cone \mathfrak{R}_m^+ by

$$\Gamma_m(s) = \int_{\mathfrak{R}_m^+} e^{-\operatorname{tr}(x)} \det(x)^{s-\kappa(m)} dx,$$

then the integral converges for $\operatorname{Re}(s) > \kappa(m) - 1$ and satisfies the following identity:

$$\Gamma_{m}(s) = \pi^{2m(m-1)} \prod_{n=0}^{m-1} \Gamma(s-4n),$$

where $\Gamma(s)$ is the ordinary gamma function (e.g. cf. [1]). Put, for $g \in \Re_m^+$, $h \in \Im_R^{(m)}$, and $(\alpha, \beta) \in C^2$,