60. Confluent Hypergeometric Functions on an Exceptional Domain

By Shōyū Nagaoka
Department of Mathematics, Kinki University
(Communicated by Shokichi Iyanaga, m. J. A., June 12, 1984)

In [3], G. Shimura studied the generalized confluent hypergeometric functions on tube domains of several types. A motive of his study can be seen in the application to the Eisenstein series as developed in his recent paper [4]. In this paper, we shall describe analogous results in the case of tube domains constructed from Cayley's octonion (which includes the case of exceptional simple tube domain).

We denote by $\mathfrak{C}_{\boldsymbol{R}}$ the real Cayley algebra, and we fix the standard basis (e.g. cf. [2]). For each integer $m(1 \leqq m \leqq 3)$, we put $\kappa(m)=4 \mathrm{~m}$ -3 . We define a vector space $\mathfrak{J}_{\boldsymbol{R}}^{(m)}$ over \boldsymbol{R} by $\widetilde{\mathcal{S}}_{R}^{(m)}=\left\{\left.x \in \boldsymbol{M}_{m}\left(\mathfrak{C}_{R}\right)\right|^{t} \bar{x}=x\right\}$, where the bar denotes the Cayley conjugation. We supply ${\underset{\mathcal{S}}{R}}_{(m)}^{(m i t h}$ a product by $x \circ y=(1 / 2)(x y+y x)$, with this product, $\mathfrak{S}_{R}^{(m)}$ becomes a real Jordan algebra. When $m=3, \mathfrak{J}_{R}^{(m)}$ is called the exceptional Jordan algebra (cf. [1]). If $x=\left(x_{i j}\right) \in \widetilde{\mathcal{F}}_{\boldsymbol{R}}^{(m)}$, we define $\operatorname{tr}(x)=\sum x_{i i} \in \boldsymbol{R}$ and define an inner product (,) on $\tilde{\mathcal{S}}_{R}^{(m)}$ by $(x, y)=\operatorname{tr}(x \circ y)$. Moreover, we define a polynomial function det on $\mathfrak{S}_{R}^{(m)}$ as follows. When $m=3$,

$$
\operatorname{det}(x)=\prod_{i=1}^{3} x_{i i}-x_{11} N\left(x_{23}\right)-x_{22} N\left(x_{13}\right)-x_{33} N\left(x_{12}\right)+\boldsymbol{T}\left(\left(x_{12} x_{23}\right) \bar{x}_{13}\right),
$$

where $N(\alpha)=\alpha \bar{a}=\bar{\alpha} a, T(\alpha)=\alpha+\bar{a}\left(\alpha \in \mathfrak{C}_{R}\right)$. In the case $m=2$, we define as $\operatorname{det}(x)=x_{11} x_{22}-N\left(x_{12}\right)$. We denote by \Re_{m} the set of squares $x \circ x$ of elements of $\breve{\Im}_{R}^{(m)}$, and by \mathfrak{R}_{m}^{+}, the interior of $\mathfrak{\Omega}_{m}$; then \mathscr{R}_{m}^{+}is a convex open cone in $\widetilde{\mathcal{S}}_{R}^{(m)}$. \mathfrak{R}_{3}^{+}is called the exceptional cone. Identifying $C^{m \kappa(m)}$ with $\mathfrak{J}_{C}^{(m)}=\mathfrak{J}_{R}^{(m)} \otimes_{\boldsymbol{R}} \boldsymbol{C}$, we define a tube domain \boldsymbol{H}_{m} by $\boldsymbol{H}_{m}=\{x+i y \mid$ $\left.x \in \widetilde{J}_{R}^{(m)}, y \in \mathfrak{R}_{m}^{+}\right\}$. Then H_{3} is the exceptional tube domain of type E_{7} (cf. [1]) and \boldsymbol{H}_{1} is the complex upper-half plane. We define a Euclidean measure $d x$ on $\mathfrak{J}_{R}^{(m)}$ by viewing $\widetilde{J}_{\boldsymbol{R}}^{(m)}$ as $\boldsymbol{R}^{m \kappa(m)}$. Now we define the generalized gamma function $\Gamma_{m}(s)$ associated with the cone \mathfrak{R}_{m}^{+}by

$$
\Gamma_{m}(s)=\int_{s_{m}^{+}} e^{-\operatorname{tr}(x)} \operatorname{det}(x)^{s-\kappa(m)} d x
$$

then the integral converges for $\operatorname{Re}(s)>\kappa(m)-1$ and satisfies the following identity :

$$
\Gamma_{m}(s)=\pi^{2 m(m-1)} \prod_{n=0}^{m-1} \Gamma(s-4 n)
$$

where $\Gamma(s)$ is the ordinary gamma function (e.g. cf. [1]). Put, for $g \in \mathfrak{R}_{m}^{+}, h \in \mathfrak{J}_{R}^{(m)}$, and $(\alpha, \beta) \in C^{2}$,

