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1. Introduction. In 1933 Yosida ([14]) applied the Nevanlinna
theory of meromorphic functions to differential equations in the com-
plex plane for the first time and generalized a Malmquist’s theorem
7D.

Theorem of Yosida. If the differential equation
(1) @W)"=R(z,w), R rational in z, w and m a positive integer,
possesses a transcendental meromorphic solution w=w(2) in the com-
plex plane, then R(z, w) must be a polynomial in w of degree at most
2m. Further, if w(z) has only a finite number of poles, the degree s
at most m.

Later various mathematicians studied differential equations in
the complex plane with the aid of Nevanlinna theory (see the refer-
ences in [1], [13]) and many generalizations of this theorem have been
obtained by several authors ([2], [5], [6], [11]1, [12], etc.).

In this paper we shall consider a general differential equation
studied in [2], [6], [11] and [12]. We denote by .9 the set of mero-
morphic functions in the complex plane and by _£ the set of EC[0, o)
for which means £ <{co. Further, the term “meromorphic” will mean
meromorphic in the complex plane.

Let P be a polynomial of w,w’, ---,w™ (n=1) with coefficients
in M:

P, w,w', -, w™)=3 1c; ;@wo(w)=- - - (w™)n,
where c; € ¥ and I is a finite set of multi-indices A=(i,1,, - - -, %,) for
which ¢;#0 and %, 14, - - -, %, are non-negative integers, and let A(z, w),
B(z, w) be polynomials in w with coefficients in 5% and mutually prime
in 9:

Az, w)=22_,a,(x)w’, Bz, w)=31_, b ()w",
where a;, b, € I} such that a,-b,70.

We shall consider the differential equation
(2) P, w,w, -, w™)=A(z, w)/B(z, w).

We put
d=maxX;e; (4+24,4 - - - +(n+1)i,),
d=maxX;c; (lo+t:+ - - - +1,),
dy=maX;e; (14204 - - - +1i,).



