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32. On Certain Cubic Fields. II
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(Communicated by Shokichi IYAN.G), M. Z. )., March 12, 1983)

1o Fo.r an algebraic number field F, we denote the class number
and the regulator of F by h and R respectively. The notations E
and D have the same meanings as in [4].

In [2], C. L. Siegel proved the following"

Theorem. Let F be imaginary quadratic field with discriminant
Dr. If IDloo, then h-oo.

To. prove this, Siegel used the formula

lira log hR.__l,(,)
,,.-,o log /]D[

which was established first by Siegel [2] or quadratic fields F, then
by Brauer [1] or general algebraic number fields F.

The purpose o. this note is to. show that an analogous result holds
or the class o. cubic fields treated in [4].

We shall prove"

Theorem. Let K be cyclic cubic field K=Q(O), Irr (0" Q)=f(x)
x-mx-(m+3)x-- 1, m e Z, with square free m+3m+ 9. Then
h asD.

Remark. There are infinitely many rational integers m such that
m+3m+9 is square free (cf. [3]).

2. Proof of Theorem. We see easily that the roots of f(x) can
be denoted by , ’, " so. that they satisfy

m+O +1 1 O’- and m+l0"m+2
m m m m

when ml.
In [4], we have proved that E=(1)X (8, ’). So we get 0R

abs {log [O[ log [O"]-(log O’[)}< log (m+ 1) log (m+2) because log ]O]
log (re+l), log O"]log (m+2). This yields

R=o(m)=o()
as we have D m +3m+9 because m +3m+9 is square free.

Now, the formula (.) holds for the set of all algebraic number
fields F. So it holds also. for our class of cubic fields K, where V
=m+3m+9, andD means the same meaning as m.

Therefore we obtain


