32. On Certain Cubic Fields. II

By Mutsuo Watabe
Department of Mathematics, Keio University
(Communicated by Shokichi Iyanaga, m. J. A., March 12, 1983)

1. For an algebraic number field F, we denote the class number and the regulator of F by h_{F} and R_{F} respectively. The notations E_{F} and D_{F} have the same meanings as in [4].

In [2], C. L. Siegel proved the following:
Theorem. Let F be imaginary quadratic field with discriminant D_{F}. If $\left|D_{F}\right| \rightarrow \infty$, then $h_{F} \rightarrow \infty$.

To prove this, Siegel used the formula

$$
\begin{equation*}
\lim _{D_{F \rightarrow \infty} \rightarrow \infty} \frac{\log h_{F} R_{F}}{\log \sqrt{\left|D_{F}\right|}}=1, \tag{*}
\end{equation*}
$$

which was established first by Siegel [2] for quadratic fields F, then by Brauer [1] for general algebraic number fields F.

The purpose of this note is to show that an analogous result holds for the class of cubic fields treated in [4].

We shall prove:
Theorem. Let K be cyclic cubic field $K=\boldsymbol{Q}(\theta), \operatorname{Irr}(\theta: \boldsymbol{Q})=f(x)$ $=x^{3}-m x^{2}-(m+3) x-1, m \in Z$, with square free $m^{2}+3 m+9$. Then $h_{K} \rightarrow \infty$ as $D_{K} \rightarrow \infty$.

Remark. There are infinitely many rational integers m such that $m^{2}+3 m+9$ is square free (cf. [3]).
2. Proof of Theorem. We see easily that the roots of $f(x)$ can be denoted by $\theta, \theta^{\prime}, \theta^{\prime \prime}$ so that they satisfy
$-\frac{m+1}{m}<\theta<-\frac{m^{2}+1}{m^{2}}, \quad-\frac{1}{m}<\theta^{\prime}<-\frac{1}{m^{2}} \quad$ and $\quad m+1<\theta^{\prime \prime}<m+2$ when $m \geqq 1$.

In [4], we have proved that $E_{K}=\langle \pm 1\rangle \times\left\langle\theta, \theta^{\prime}\right\rangle$. So we get $0<R_{K}$ $=\operatorname{abs}\left\{\log |\theta| \log \left|\theta^{\prime \prime}\right|-\left(\log \left|\theta^{\prime}\right|\right)^{2}\right\}<\log (m+1) \log (m+2)$ because $\log |\theta|$ $<\log (m+1), \log \left|\theta^{\prime \prime}\right|<\log (m+2)$. This yields

$$
R_{K}=o\left(m^{2}\right)=o\left(\sqrt{D_{K}}\right)
$$

as we have $\sqrt{D_{K}}=m^{2}+3 m+9$ because $m^{2}+3 m+9$ is square free.
Now, the formula (*) holds for the set of all algebraic number fields F. So it holds also for our class of cubic fields K, where $\sqrt{D_{K}}$ $=m^{2}+3 m+9$, and $D_{K} \rightarrow \infty$ means the same meaning as $m \rightarrow \infty$.

Therefore we obtain

