66. On Voronoï's Theory of Cubic Fields. II

By Masao Arai

Gakushuin Girls' High School

(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1981)

In utilizing the V-quadruple defined in our Note I^{i} , we shall give an algorithm to determine the type of decomposition of a rational prime in a cubic field.

Let p be a given prime, α an integer of the cubic field K such that $K = Q(\alpha)$ and f(X) the minimal polynomial of α . If p does not divide the index $(O_K; \mathbb{Z}[\alpha])$, then the type of decomposition of p in K is determined by the type of decomposition of f(X) mod. p in irreducible polynomials mod. p by a classical theorem.

Now if $[1, \alpha, \beta]$ is a V-basis of O_K and $\varphi[1, \alpha, \beta] = (a, b, c, d)$, then we have $|a| = (O_K : \mathbb{Z}[\alpha])$ because $\alpha^2 = -ac - b\alpha - a\beta$.

Let us first settle the case where K has inessential discriminant divisor and p=2. The only possible inessential discriminant divisor of a cubic field is 2, and it is known that K has such a divisor if and only if $a \equiv d \equiv 0$, $b \equiv c \equiv 1 \pmod{2}$ where (a, b, c, d) is, as above, $\varphi[1, \alpha, \beta]$ for a V-basis $[1, \alpha, \beta]$ of O_K . Furthermore, it is also known that 2 is decomposed in K in the form $(2) = p_1 p_2 p_3$, with $p_1 = (2, \alpha + 1)$, $p_2 = (2, \beta + 1)$, $p_3 = (2, \alpha + \beta)$ (cf. [2], p. 120).

The following theorem assures that all other cases can be treated by the classical theorem cited above.

Theorem 4. Let p be an odd prime and K be any cubic field, or else let p be any prime and K be a cubic field without inessential discriminant divisor. Then O_K has a V-basis $[1, \alpha, \beta]$ such that $\varphi[1, \alpha, \beta]$ = (a, b, c, d) with $p \nmid a$.

Proof. Let $[1, \alpha, \beta]$ be a V-basis of O_{κ} and put $\varphi[1, \alpha, \beta] = (a, b, c, d)$. If $p \nmid a$, then we are done. If $p \mid a$, then consider $(a_i, b_i, c_i, d_i) = (a, b, c, d)A^iB$ where A, B are 4×4 matrices given in I. We have

$$a_{-1} = -a + b - c + d,$$

 $a_0 = d,$
 $a_1 = a + b + c + d.$

If p is odd and a_{-1}, a_0, a_1 are all divisible by p, then a, b, c, d are also divisible by p contrary to Theorem 2. So $p \nmid a_i$ for i = -1, 0 or 1, and for (a_i, b_i, c_i, d_i) we have a V-basis $[1, \alpha_i, \beta_i]$ of O_K with $\varphi[1, \alpha_i, \beta_i] = (a_i, b_i, c_i, d_i)$.

In case p=2, we can prove in the same way if K has no inessential

¹⁾ Proc. Japan Acad., 57A, 226-229 (1981).