66. On Voronoï's Theory of Cubic Fields. II

By Masao Arai
Gakushuin Girls' High School
(Communicated by Shokichi Iyanaga, m. J. A., May 12, 1981)

In utilizing the V-quadruple defined in our Note I^{1}, we shall give an algorithm to determine the type of decomposition of a rational prime in a cubic field.

Let p be a given prime, α an integer of the cubic field K such that $K=\boldsymbol{Q}(\alpha)$ and $f(X)$ the minimal polynomial of α. If p does not divide the index ($O_{K}: Z[\alpha]$), then the type of decomposition of p in K is determined by the type of decomposition of $f(X) \bmod . p$ in irreducible polynomials mod. p by a classical theorem.

Now if $[1, \alpha, \beta]$ is a V-basis of O_{K} and $\varphi[1, \alpha, \beta]=(\alpha, b, c, d)$, then we have $|a|=\left(O_{K}: Z[\alpha]\right)$ because $\alpha^{2}=-a c-b \alpha-a \beta$.

Let us first settle the case where K has inessential discriminant divisor and $p=2$. The only possible inessential discriminant divisor of a cubic field is 2 , and it is known that K has such a divisor if and only if $a \equiv d \equiv 0, b \equiv c \equiv 1(\bmod .2)$ where (a, b, c, d) is, as above, $\varphi[1, \alpha, \beta]$ for a V-basis $[1, \alpha, \beta]$ of O_{K}. Furthermore, it is also known that 2 is decomposed in K in the form (2) $=\mathfrak{p}_{1} \mathfrak{p}_{2} \mathfrak{p}_{3}$, with $\mathfrak{p}_{1}=(2, \alpha+1), \mathfrak{p}_{2}=(2, \beta+1)$, $\mathfrak{p}_{3}=(2, \alpha+\beta)$ (cf. [2], p. 120).

The following theorem assures that all other cases can be treated by the classical theorem cited above.

Theorem 4. Let p be an odd prime and K be any cubic field, or else let p be any prime and K be a cubic field without inessential discriminant divisor. Then O_{K} has a V-basis $[1, \alpha, \beta]$ such that $\varphi[1, \alpha, \beta]$ $=(a, b, c, d)$ with $p \nmid a$.

Proof. Let $[1, \alpha, \beta]$ be a V-basis of O_{K} and put $\varphi[1, \alpha, \beta]=(a, b, c$, d). If $p \nmid a$, then we are done. If $p \mid a$, then consider $\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$ $=(a, b, c, d) \boldsymbol{A}^{i} \boldsymbol{B}$ where $\boldsymbol{A}, \boldsymbol{B}$ are 4×4 matrices given in I. We have

$$
\begin{aligned}
a_{-1} & =-a+b-c+d, \\
a_{0} & =d, \\
a_{1} & =a+b+c+d .
\end{aligned}
$$

If p is odd and a_{-1}, a_{0}, a_{1} are all divisible by p, then a, b, c, d are also divisible by p contrary to Theorem 2. So $p \nmid a_{i}$ for $i=-1,0$ or 1 , and for $\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$ we have a V-basis $\left[1, \alpha_{i}, \beta_{i}\right]$ of O_{K} with $\varphi\left[1, \alpha_{i}\right.$, $\left.\beta_{i}\right]=\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$.

In case $p=2$, we can prove in the same way if K has no inessential

[^0]
[^0]: 1) Proc. Japan Acad., 57 A, 226-229 (1981).
