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Let LP be the set of all rational primes nd M a non-empty subset
of . For a pair of real numbers (a, ), where either a-- 0 and /0
or a0 ( arbitrary), and for positive x, put f,(x)=x-(log x). We
put furthermore

z,,(M,x)= f,(p),
pM px

d.,(M, x)= .,(M, x)
.,(c2, x)

D.,(M) =lim inf d.,(M, x),

D.,(M) lim sup d.,(M, x).

When D.,(M)=D.,(M), we denote this value by D.,(M) and say that
M has the (a, fl)-density D.,(M). The natural density is nothing other
than (1, 0)-density and, as is well-known, the Dirichlet density is equal
to (0, 0)-density (cf. 1 ]).

We shall say that (a, fl)-density is stronger than (.,/)-density, and
write Dr,-4D.,, if the existence of D.,(M) for MP implies the ex-
istence of Dr,(M) and, when these densities exist, their values are the
same (-4 is obviously an order relation). If D.,-<Dr, and D,-<D.,,
we say that both densities are equivalent and write D.,-Dr, ( is
clearly an equivalence relation).

Our main theorem states"
Theorem 1. Any of our (, fl)-densities is equivalent to one of

the three densities, Do,o, Do,,D,o, which will be denoted by do, d, d,
respectively. We have furthermore dod-<d and these three densi-
ties are inequivalent.

As noted above, do and d. are Dirichlet density and natural density,
respectively. It is known that d0-<d (cf. 1 ]). Our theorem shows
that the density d lies, so to speak, between the two.

The ollowing theorem gives a more precise form of the first part
of Theorem 1.

Theorem 2. For any flO, Do, is equivalent to d=Do, and for
any cO and any fl, D., is equivalent to d=D,o.

Sketch of proof of Theorem 2. It is easil_v shown that


