82. On Certain Densities of Sets of Primes

By Leo MURATA

Department of Mathematics, Faculty of Science, Tokyo Metropolitan University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1980)

Let \mathcal{P} be the set of all rational primes and M a non-empty subset of \mathcal{P} . For a pair of real numbers (α, β) , where either $\alpha = 0$ and $\beta \ge 0$ or $\alpha > 0$ (β arbitrary), and for positive x, put $f_{\alpha,\beta}(x) = x^{\alpha-1}(\log x)^{\beta}$. We put furthermore

$$egin{aligned} \pi_{lpha,eta}(M,x) &= \sum\limits_{p\in M,\ p\leq x} f_{lpha,eta}(p), \ d_{lpha,eta}(M,x) &= rac{\pi_{lpha,eta}(M,x)}{\pi_{lpha,eta}(\mathcal{Q},x)}, \ \underline{D}_{lpha,eta}(M) &= \lim\limits_{x o\infty} d_{lpha,eta}(M,x), \ \overline{D}_{lpha,eta}(M) &= \limsup\limits_{x o\infty} d_{lpha,eta}(M,x). \end{aligned}$$

When $\underline{D}_{\alpha,\beta}(M) = \overline{D}_{\alpha,\beta}(M)$, we denote this value by $D_{\alpha,\beta}(M)$ and say that M has the (α, β) -density $D_{\alpha,\beta}(M)$. The natural density is nothing other than (1, 0)-density and, as is well-known, the Dirichlet density is equal to (0, 0)-density (cf. [1]).

We shall say that (α, β) -density is *stronger* than (γ, δ) -density, and write $D_{\gamma,\delta} \prec D_{\alpha,\beta}$, if the existence of $D_{\alpha,\beta}(M)$ for $M \subset \mathcal{P}$ implies the existence of $D_{\gamma,\delta}(M)$ and, when these densities exist, their values are the same (\prec is obviously an order relation). If $D_{\alpha,\beta} \prec D_{\gamma,\delta}$ and $D_{\gamma,\delta} \prec D_{\alpha,\beta}$, we say that both densities are *equivalent* and write $D_{\alpha,\beta} \sim D_{\gamma,\delta}$ (\sim is clearly an equivalence relation).

Our main theorem states:

Theorem 1. Any of our (α, β) -densities is equivalent to one of the three densities, $D_{0,0}, D_{0,1}, D_{1,0}$, which will be denoted by d_0, d_1, d_2 , respectively. We have furthermore $d_0 \leq d_1 \leq d_2$ and these three densities are inequivalent.

As noted above, d_0 and d_2 are Dirichlet density and natural density, respectively. It is known that $d_0 < d_2$ (cf. [1]). Our theorem shows that the density d_1 lies, so to speak, between the two.

The following theorem gives a more precise form of the first part of Theorem 1.

Theorem 2. For any $\beta > 0$, $D_{0,\beta}$ is equivalent to $d_1 = D_{0,1}$ and for any $\alpha > 0$ and any β , $D_{\alpha,\beta}$ is equivalent to $d_2 = D_{1,0}$.

Sketch of proof of Theorem 2. It is easily shown that