78. On the Hessian of the Square of the Distance on a Manifold with a Pole

By Katsumi Yagi
Department of Mathematics, Osaka University
(Communicated by Kunihiko Kodaira, m. J. A., Sept. 12, 1980)

Analysis on a manifold with a pole has been studied in a series of papers by Greene-Wu. In particular, the characterization of C^{n} in terms of geometric conditions is one of the most interesting problems. In the case of a simply-connected complete Kähler manifold of nonpositive curvature this problem has been solved by Siu-Yau [2] and Greene-Wu [1] (Theorem J). Concerning these results Wu has proposed some open problems in [4] and [5]. In this note we shall prove theorems related to his propositions. The author would like to thank Prof. Wu whose suggestion made this note materialize.

1. A smooth mapping $\phi: N \rightarrow M$ between Riemannian manifolds is called a quasi-isometry iff ϕ is a diffeomorphism and there exist positive constants μ and ν such that for each tangent vector X on N,

$$
\mu|X|_{N} \leqq\left|\phi_{*}(X)\right|_{M} \leqq \nu|X|_{N} .
$$

We recall that (M, o) is called a manifold with a pole iff M is a Riemannian manifold and the exponential mapping at $o \in M$ is a global diffeomorphism. Let (M, o) be a manifold with a pole. The distance function from the pole o will be denoted by r so that r^{2} is a smooth function on M. The first theorem in question is the following

Theorem 1. Let (M, o) be a manifold with a pole. Suppose there exists a continuous non-negative function $\varepsilon(t)$ on $[0, \infty)$ such that:
(1) $\left|(1 / 2) D^{2} r^{2}-g\right| \leqq \varepsilon(r) g$,
(2) $\varepsilon_{o}=\int_{0}^{\infty}(\varepsilon(t) / t) d t<\infty$.

Then $\exp : T_{o}(M) \rightarrow M$ is a quasi-isometry satisfying

$$
\exp \left(\varepsilon_{o}\right)^{-1}|V| \leqq\left|\exp _{*}(V)\right| \leqq \exp \left(\varepsilon_{o}\right)|V|
$$

for any tangent vector V at any point in $T_{o}(M)$.
In (1) above, $D^{2} r^{2}$ denotes the Hessian of the smooth function r^{2} on M. Moreover inequality (1) means the following: If $x \in M$ and $X \in T_{x}(M)$ is a unit vector, then

$$
\left|\frac{1}{2} D^{2} r^{2}(X, X)-1\right| \leqq \varepsilon(r(x))
$$

Remark. It follows from the above theorem that if (M, o) is a manifold with a pole and $(1 / 2) D^{2} r^{2}=g$ on M then M is isometric to a Euclidian space. This is a weak form of a theorem by H. W. Wissner

