78. On the Hessian of the Square of the Distance on a Manifold with a Pole

By Katsumi YAGI

Department of Mathematics, Osaka University

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1980)

Analysis on a manifold with a pole has been studied in a series of papers by Greene-Wu. In particular, the characterization of C^n in terms of geometric conditions is one of the most interesting problems. In the case of a simply-connected complete Kähler manifold of nonpositive curvature this problem has been solved by Siu-Yau [2] and Greene-Wu [1] (Theorem J). Concerning these results Wu has proposed some open problems in [4] and [5]. In this note we shall prove theorems related to his propositions. The author would like to thank Prof. Wu whose suggestion made this note materialize.

1. A smooth mapping $\phi: N \rightarrow M$ between Riemannian manifolds is called a *quasi-isometry* iff ϕ is a diffeomorphism and there exist positive constants μ and ν such that for each tangent vector X on N,

$$\mu |X|_{\scriptscriptstyle N} \leq |\phi_*(X)|_{\scriptscriptstyle M} \leq
u |X|_{\scriptscriptstyle N}$$

We recall that (M, o) is called a *manifold with a pole* iff M is a Riemannian manifold and the exponential mapping at $o \in M$ is a global diffeomorphism. Let (M, o) be a manifold with a pole. The distance function from the pole o will be denoted by r so that r^2 is a smooth function on M. The first theorem in question is the following

Theorem 1. Let (M, o) be a manifold with a pole. Suppose there exists a continuous non-negative function $\varepsilon(t)$ on $[0, \infty)$ such that:

(1) $|(1/2)D^2r^2-g| \leq \varepsilon(r)g$,

(2)
$$\varepsilon_o = \int_0^\infty (\varepsilon(t)/t) dt < \infty.$$

Then $\exp: T_o(M) \rightarrow M$ is a quasi-isometry satisfying $\exp(\varepsilon_o)^{-1} |V| \leq |\exp_*(V)| \leq \exp(\varepsilon_o) |V|$

for any tangent vector V at any point in $T_o(M)$.

In (1) above, D^2r^2 denotes the Hessian of the smooth function r^2 on M. Moreover inequality (1) means the following: If $x \in M$ and $X \in T_x(M)$ is a unit vector, then

$$\left|\frac{1}{2}D^2r^2(X,X)-1\right|\leq\varepsilon(r(x)).$$

Remark. It follows from the above theorem that if (M, o) is a manifold with a pole and $(1/2)D^2r^2 = g$ on M then M is isometric to a Euclidian space. This is a weak form of a theorem by H. W. Wissner