11. A Remark on Convergence of Nonlinear Semigroups

By Yoshikazu Kobayashi

Faculty of Engineering, Niigata University

(Communicated by Kôsaku Yosida, M. J. A., Feb. 13, 1979)

1. Introduction. Let X be a real Banach space. Let A_n , n=1, 2, ..., and A be dissipative operators in X which satisfy the conditions $R(I-\lambda A_n)\supset \overline{D(A_n)}$ and $R(I-\lambda A)\supset \overline{D(A)}$ for $\lambda>0$.

Let $\{T_n(t); t \ge 0\}$ and $\{T(t); t \ge 0\}$ be the (nonlinear) semigroups generated by A_n and A in the sense of Crandall-Liggett [6]. It was shown by Brezis-Pazy [4] that if $\overline{D(A)} \subset \overline{D(A_n)}$, $n=1, 2, \cdots$, then the following property (i) implies the property (ii).

(i) $\lim_{n\to\infty} (I - \lambda A_n)^{-1} = (I - \lambda A)^{-1}$ for each $\lambda > 0$ and $x \in \overline{D(A)}$.

(ii) $\lim_{n\to\infty} T_n(t) = T(t)x$

for each $x \in \overline{D(A)}$ and the limit is uniform on bounded t-intervals.

Our aim in this note is to show that the property (ii) implies (i) under some additional conditions. Precisely, we shall show the following

Theorem. Let X^* be uniformly convex. If $\overline{D(A)}$ is convex and $\overline{D(A)} \subset \overline{D(A_n)}$, $n=1, 2, \cdots$, then the property (ii) implies the property (i).

The above theorem is due to Bénilan [3] in the Hilbert space case. The idea of our proof of the theorem is essentially due to the recent work [1] of Baillon. As usual, we define the duality map F on X into X^* by $F(x) = \{x^* \in X^*; \langle x, x^* \rangle = ||x||^2 = ||x^*||^2\}$. If X^* is uniformly convex, then F is single-valued and uniformly continuous on each bounded set of X. We refer to Barbu [2] for some properties of the duality map and nonlinear semigroups.

2. Proof of Theorem. Let $\overline{D(A)}$ be convex and $\overline{D(A)} \subset \overline{D(A_n)}$, $n=1,2,\cdots$, and assume the property (ii). Let $x \in \overline{D(A)}$ and $\lambda > 0$ be fixed. We set $y_n = (I - \lambda A_n)^{-1}x$. We want to show that y_n converges to $(I - \lambda A_n)^{-1}x$ as $n \to \infty$. For the purpose, we prepare some lemmas.

Lemma 1. $||y_n|| = O(1)$ as $n \to \infty$.

Proof. By Theorem 9 in [4], we have

$$\|y_n-x\| \leq \frac{4}{\lambda} \int_0^\lambda \|T_n(\tau)x-x\| d\tau.$$

Since $T_n(\tau)x$ is bounded as $n \to \infty$ uniformly for $\tau \in [0, \lambda]$ by (ii), it follows that $||y_n||$ is bounded as $n \to \infty$. Q.E.D.

By the Hahn-Banach theorem, there exists a linear functional L