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1. Let (s) (s----a +it) be the Riemann zeta-function. And let Y(t)
-(log (I t[ + 3))2/3(log log (I t I+ 3))1/3. Also let c denote generally a positive
absolute constant whose value may differ at each occurrence. Then,
as. is well-known, we have

Theorem 1. (s) does not vanish for a>=l--cY(t)-1.
Previous proofs of this fact are all dependent either on the theory of
integral functions or on a function-theoretical lemma of Landau. The
purpose of the present note is to show briefly that there exists still
another proof which does not depend at all on the deep function-
theoretical properties of 5(s). Our main tools are the Vinogradov-
Richert theorem (Lemma 1 below), the Selberg sieve and an argument
closely related to that of [1].

As a by-product of our procedure we can prove also
Theorem 2. Let U be suciently large, and let us assume

(1 / iU)-l(( D(U)(log U)2/(log log U)1/4,
where D(U) increases monotonically to infinity as U--.oo. Then (s)
does not vanish for

a>=I--cY(U)- log D(U), Itl<= U/2, t= +_ U.
The proof of Theorem 2 will not be given below; we mention only

that it is derived rom Lemmas 3 and 4. The detailed account will
appear elsewhere.

2. Throughout in this and the next sections we assume that T is
sufficiently large and that 1--+iT is a zero of (s) such that 05
_<_(log T)-/. Because oi the reason stated at the end of this section,
we may presume also (log T)-.

Now let a(n; a) be the sum o the a-th powers o2 divisors of n,
and let us put f(n)=a(n; --5--iT). We apply the Selberg sieve to the
sequence {If(n)l}. According to the general theory we should put

g(r)-- I-[ (F--I), G(R)= Y, l(r)g(r),
pr

where

F---- f(p) p-.
m----0

Then the optimal weight is given by


