No. 9] 587

134. On the Structure of the Associated Modular

By Tsuyoshi Andô

Research Institute of Applied Electricity, Hokkaidô University (Comm. by K. Kunugi, M.J.A., Nov. 12, 1958)

Let R be a modulared semi-ordered linear space $^{\scriptscriptstyle 1)}$ with a modular m. The structure of the conjugate modular \overline{m} on the conjugate space \overline{R}^m is investigated in detail. $^{\scriptscriptstyle 2)}$ On the other hand, it is known $^{\scriptscriptstyle 3)}$ that if the norm on R by m is not continuous, \overline{R}^m constitutes a proper normal manifold of the associated space \widetilde{R}^m . In this short note, we shall determine completely the structure of the associated modular \widetilde{m} on the orthogonal complement $(\overline{R}^m)^1$ of \overline{R}^m in \widetilde{R}^m .

Theorem. The associated modular \widetilde{m} is linear $(\overline{R}^m)^1$; more precisely it is given by the formula:

$$\widetilde{m}(\widetilde{a}) = \sup_{m(x) \geq \infty} |\widetilde{a}(x)| \qquad for \ all \ \widetilde{a} \in (\overline{R}^m)^1.$$

Proof. There exists 5 a normal manifold N of R such that m is semi-simple on N and is singular on N^{\perp} . It is known that N is semi-regular 6 and the associated modular \widetilde{m} is linear on $[N^{\perp}]\widetilde{R}^{m}$. Thus to prove Theorem we may assume that R is semi-regular.

Let
$$0 \le \widetilde{a} \in (\overline{R}^m)^1$$
 and $0 \le a \in R$ $m(a) < \infty$.
Put $F = \{x; \ 0 \le x \le a \quad \widetilde{a}(x) = 0\}.$

Then it is a lattice manifold. Putting $e = \bigcup_{x \in F} x$, we shall show first that a = e. For this purpose, it is sufficient to prove that

$$\bar{x}(a-e) \leq \varepsilon$$
 for any $0 \leq \bar{x} \in \bar{R}^m$ and $\varepsilon > 0$,

because R is semi-regular by assumption. Since $\widetilde{a} \cap \overline{x} = 0$, there exist $\{b_{\nu}\}_{\nu=1}^{\infty} \subset R$ such that

$$0 \leq b_{\nu} \leq a \quad \text{and} \quad \overline{x}(a-b_{\nu}) + \widetilde{a}(b_{\nu}) \leq \varepsilon/2^{\nu} \quad (\nu=1, 2, \cdots).$$
Putting $b = \bigcap_{\nu=1}^{\infty} b_{\nu}$, we have $0 \leq \widetilde{a}(b) \leq \inf_{\nu=1, 2, \cdots} \widetilde{a}(b_{\nu}) = 0$, namely $b \in F$.

Further universal continuity of \overline{x} implies $\overline{x}(a-b) = \overline{x}(\bigcup_{\nu=1}^{\infty} (a-b_{\nu}))$

 $\leq \sum_{\nu=1}^{\infty} \overline{x}(a-b_{\nu}) \leq \varepsilon$. From this and the definition of e it follows that

¹⁾ We use the definitions, terminology, and notations in H. Nakano: Modulared Semi-ordered Linear Spaces, Maruzen, Tokyo (1950).

²⁾ Ibid., §§ 41-46.

³⁾ Ibid., Theorem 31.10.

⁴⁾ $\widetilde{m}(\xi \widetilde{a}) = \xi \widetilde{m}(\widetilde{a})$ for all $\xi \geq 0$.

⁵⁾ Ibid., § 35.

⁶⁾ Semi-regularity means that $\overline{x}(a)=0$ (for all $\overline{x} \in \overline{R}^m$) implies a=0.

⁷⁾ Ibid., § 18.