130. On an Example of Non-uniqueness of Solutions of the Cauchy Problem for the Wave Equation

By Hitoshi KUMANO-GO

Department of Mathematics, Osaka University (Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1963)

1. Introduction. In the recent note [4] F. John has constructed the following example: For any positive integer *m* there exists a solution of the wave equation $\Box u = (\partial^2/\partial x^2 + \partial^2/\partial y^2 - \partial^2/\partial t^2)u = 0$, which is analytic in a cyrindrical domain $\mathcal{D} = \{(x, y, t); x^2 + y^2 < 1\}$ and belongs to C^m in \mathbb{R}^3 not C^{m+2} in the neighborhood of any point outside \mathcal{D} .

The purpose of this note is to construct real valued functions u, f and g which belong to \mathcal{B} and satisfy the equation $Lu \equiv (\Box + f) \partial/\partial t + g)u = 0$ in R^3 , where the support of u equals to the set $R^3 - \mathcal{D}$.

What is remarkable is that the cylinder $S = \{(x, y, t); x^2 + y^2 = 1\}$ is non-characteristic for L. Hence this example shows that for the operator L the uniqueness of solutions of the Cauchy problem for the non-characteristic surface S does not hold. But we must remark that any solution for the equation with the principal part \Box , which has its support in a 'strictly convex set' at a point of a time-like plane, vanishes identically in a neighborhood of that point (see [5]).

Many examples of non-uniqueness have been constructed by A. Plis [6] and [7], P. Cohen [1] etc., and L. Hörmander has proved in the general theory that the uniqueness for an operator with the principal part \Box does not hold even for a time-like plane if we admit complex valued coefficients (see [3] p. 228). But our example is interesting in the physical meaning and we can take f=0 if we admit complex valued g and u.

We shall construct this by the method of A. Pliś [7], using the asymptotic expansion of Bessel functions $J_{\lambda}(\lambda a)$ in the interval (0, $1-\lambda^{-2\rho/5}$] for a fixed ρ ($0 < \rho < 1$).

2. Lemma 1. Let $J_{\lambda}(\alpha)$ be Bessel functions of order $\lambda > 0$. Then, for any fixed $\rho(0 < \rho < 1)$ we have the following asymptotic formula: (1) $J_{\lambda}(\lambda \alpha) = (2\pi\lambda \tanh \alpha)^{-1/2} \exp \{\lambda(\tanh \alpha - \alpha)\}(1 + 0(\lambda^{-1/5}))$

 $(0 < a < 1, \cosh \alpha = a^{-1}, \alpha > 0)$

which is valid uniformly for every a in $(0, 1-\lambda^{-2\rho/5}]$.

Proof. First of all we remark

(2) $1 \ge \tanh \alpha = \sqrt{1-\alpha^2} \ge \lambda^{-\rho/5} \text{ in } 0 < \alpha \le 1-\lambda^{-2\rho/5}.$

We shall use a well-known integral representation of Bessel functions (see [2] p. 412):