130. On an Example of Non-uniqueness of Solutions of the Cauchy Problem for the Wave Equation

By Hitoshi Kumano-go
Department of Mathematics, Osaka University
(Comm. by Kinjirô Kunugi, m.J.A., Oct. 12, 1963)

1. Introduction. In the recent note [4] F. John has constructed the following example: For any positive integer m there exists a solution of the wave equation $\square u=\left(\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}-\partial^{2} / \partial t^{2}\right) u=0$, which is analytic in a cyrindrical domain $\mathscr{D}=\left\{(x, y, t) ; x^{2}+y^{2}<1\right\}$ and belongs to C^{m} in R^{3} not C^{m+2} in the neighborhood of any point outside \mathscr{D}.

The purpose of this note is to construct real valued functions u, f and g which belong to \mathscr{B} and satisfy the equation $L u \equiv(\square+f$ $\partial / \partial t+g) u=0$ in R^{3}, where the support of u equals to the set $R^{3}-\mathscr{D}$.

What is remarkable is that the cylinder $S=\left\{(x, y, t) ; x^{2}+y^{2}=1\right\}$ is non-characteristic for L. Hence this example shows that for the operator L the uniqueness of solutions of the Cauchy problem for the non-characteristic surface S does not hold. But we must remark that any solution for the equation with the principal part \square, which has its support in a 'strictly convex set' at a point of a time-like plane, vanishes identically in a neighborhood of that point (see [5]).

Many examples of non-uniqueness have been constructed by A. Pliś [6] and [7], P. Cohen [1] etc., and L. Hörmander has proved in the general theory that the uniqueness for an operator with the principal part \square does not hold even for a time-like plane if we admit complex valued coefficients (see [3] p. 228). But our example is interesting in the physical meaning and we can take $f=0$ if we admit complex valued g and u.

We shall construct this by the method of A. Plis [7], using the asymptotic expansion of Bessel functions $J_{\lambda}(\lambda a)$ in the interval (0 , $\left.1-\lambda^{-2 \rho / 5}\right]$ for a fixed $\rho(0<\rho<1)$.
2. Lemma 1. Let $J_{\lambda}(a)$ be Bessel functions of order $\lambda>0$. Then, for any fixed $\rho(0<\rho<1)$ we have the following asymptotic formula:

$$
\begin{align*}
J_{\lambda}(\lambda \alpha)=(2 \pi \lambda \tanh \alpha)^{-1 / 2} & \exp \{\lambda(\tanh \alpha-\alpha)\}\left(1+0\left(\lambda^{-1 / 5}\right)\right) \tag{1}\\
& \left(0<\alpha<1, \cosh \alpha=a^{-1}, \alpha>0\right)
\end{align*}
$$

which is valid uniformly for every a in $\left(0,1-\lambda^{-2 \rho / 5}\right]$.
Proof. First of all we remark
(2) $\quad 1 \geqq \tanh \alpha=\sqrt{1-a^{2}} \geqq \lambda^{-\rho / 5}$ in $0<a \leqq 1-\lambda^{-2 \rho / 5}$.

We shall use a well-known integral representation of Bessel functions (see [2] p. 412):

