3. Extensions of Topologies

By Shogo Ikenaga and Iwao Yoshioka
Department of Mathematics, Osaka Gakugei Daigaku
(Comm. by Kinjirô Kunugi, m.J.A., Jan. 12, 1965)

Let (X, τ) be a topological space and $\tau \subset \tau^{*}$. Then τ^{*} will be called a simple extension of τ if and only if there exsists an $A \subset X$ such that $\tau^{*}=\left\{O \cup\left(O^{\prime} \cap A\right) \mid 0,0^{\prime} \in \tau\right\}$. In this case we write $\tau^{*}=\tau(A)$. This definition is due to N. Levine [2]. N. Levine has obtained some interesting results about simple extensions of topologies [2].

It is the purpose of this note to consider the simple extensions of regular or other several topologies. In the next, we shall consider a generalization of simple extensions in § 3.

Let (X, τ) be a topological space and $\tau^{*}=\tau(A)$. Then we shall notice that for each $x \notin A$, the τ-open neighborhood system of x is a τ^{*}-open base of x and for each $x \in A$, the family $\{V(x) \cap A \mid V(x)$: τ-open neighborhood of $x\}$ is a τ^{*}-open base of x. Thus it is sufficient to consider these open bases.

The notations which will be used in this note are chiefly following. A^{c} denotes the complement of A, \bar{A} and \bar{A}^{*} denote the closure operators relative to τ and τ^{*} respectively. By $U(x), V(x)$, and $W(x)$ we denote τ-open neighborhoods of $x .(A, \tau \cap A)$ denotes the subspace A of (X, τ), that is, $\tau \cap A$ denotes the relative topology of A with respect to τ.

The following facts have been shown in Lemma 3 of [2]. Let (X, τ) be a topological space and $\tau^{*}=\tau(A)$. Then $(A, \tau \cap A)=\left(A, \tau^{*} \cap A\right)$ and $\left(A^{c}, \tau \cap A^{c}\right)=\left(A^{c}, \tau^{*} \cap A^{c}\right)$. This follows from the above remark about the τ^{*}-open base of x.
§ 1. Simple extensions of regular topologies. In this section, we shall obtain a result about simple extensions of regular topologies which is better than N. Levine's theorem [2] and its application.

Let (X, τ) be a topological space and A a subset of X. We shall say that A is R-open in (X, τ) if and only if for each $x \in A$, there exists a $V(x)$ such that $V(x) \cap \bar{A} \subset A$, i.e., A is open in $(\bar{A}, \tau \cap \bar{A})$.

Theorem 1.1. Let (X, τ) be a regular space and $\tau^{*}=\tau(A)$. Then the following conditions (i) $\sim(i i i)$ are equivalent:
(i) A is R-open in (X, τ);
(ii) $\bar{A} \cap A^{c}$ is closed in (X, τ);
(iii) $\left(X, \tau^{*}\right)$ is regular.

Proof. It is evident that (i) and (ii) are equivalent. Then we

