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54. Properties of Ergodic Affine Transformations
of Locally Compact Groups. 1I
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(Comm. by Kinjird KUNUGI, M. J. A.,, March 12, 1970)

This is a continuation of the preceding paper [5]. The followings
shall be proved below : (1) If G is a locally compact non-discrete abelian
group which has an ergodic affine transformation S with respect to a
Haar measure on G then G is compact. (2) An affine transformation
S of a locally compact abelian group G which has a dense orbit in G is
ergodic with respect to a Haar measure on G.

Theorem 1. If G is alocally compact non-discrete abelian group
which has an ergodic affine transformation S(x)=a-+ T(x) with respect
to a Haar measure p on G then G is compact.

Proof. Let G,be the connected component of the identity 0 of G.
Since T is bi-continuous by virtue of [5, Theorem 1], G, is invariant
under T. Thus S induces an affine transformation S, of G/G, in the
following way

S+ G)=a+T(x)+G, for z+ G,y e G/G,.
It is clear that S, is ergodic with respect to a Haar measure p, on
G/G,.

Case I. Let G, be not open in G. Then G/G, is a locally compact
totally disconnected non-discrete abelian group which has an ergodic
affine transformation with respect to a Haar measure on G/G,. Hence
G/G, is compact by [5, Theorem 3], from which it follows easily that
G is compactly generated. Thus the well-known structure theorem
for a locally compact, compactly generated abelian group (see [1,
Theorem (9.8)]) implies that G is topologically isomorphic with R?x Z¢
% F for some nonnegative integers p and ¢ and some compact abelian
group F, where R is the real line and Z is the additive group of
integers. But in the present case ¢=0, i.e., G is topologically iso-
morphic with R?x F. For if ¢=#0 then G/(R*X F)=Z¢ is not finite,
which is impossible since R?x F' is an open subgroup of G. It is clear
that F' is invariant under T. So the ergodic affine transformation
S(x) =0+ T(x) of G induces an affine transformation S,(x+F)=a+ T(x)
+ F of G/F=R? which is ergodic with respect to a Haar measure on
G/F=R*. By [3, Theorem 4], G/F=R? is compact, therefore G=F,
i.e., G is compact.

Case II. Let G, be open in G. Then G/G, is a discrete abelian



