192. On Some Theorems of Berberian and Sheth

By Takayuki FURUTA*) and Ritsuo NAKAMOTO**)
(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 12, 1970)

1. Introduction. In this paper an operator T means a bounded linear operator acting on a complex Hilbert space H.

Following Halmos [4] we define the numerical range W(T) as follows:

$$W(T) = \{(Tx, x); ||x|| = 1\}.$$

The basic facts concerning W(T) are that it is convex and that its closure $\overline{W(T)}$ contains the spectrum $\sigma(T)$ of T.

Definition 1 ([4]). An operator T is said to be *convexoid* if $\overline{W(T)} = \operatorname{co} \sigma(T)$

where the bar denotes the closure and co $\sigma(T)$ means the convex hull of the spectrum $\sigma(T)$ of T.

It is known that hyponormal operator is convexoid.

S. K. Berberian introduced the notion "cramped" of the unitary operator as follows:

Definition 2 ([1]). An unitary operator is said to be *cramped* if its spectrum is contained in some semicircle of the unit circle

$$\{e^{i\theta}; \theta_1 \leq \theta \leq \theta_2, \theta_2 - \theta_1 < \pi\}.$$

Definition 3. A closed sector S is said to be *cramped sector if* $S = \{re^{i\theta}; r \ge 0, \theta_1 \le \theta \le \theta_2, \theta_2 - \theta_1 < \pi\}$

and $\theta_2 - \theta_1$ is named to be sector angle of cramped sector S.

Two lines are said to be the sector lines respectively which start the origin through the end point of the semicircle of the cramped sector, that is to say, a cramped sector consists of two sector lines and a semicircle. [cf., L_1 , L_2 of Fig.]

Definition 4 ([2] [7]). An operator T is said to satisfy the condition G_1 if

$$\|(T-\lambda)^{-1}\| \leq [\operatorname{dist}(\lambda, \sigma(T))]^{-1}$$

for all $\lambda \notin \sigma(T)$.

Definition 5 ([9]). A point α of $\sigma(T)$ is a *semibare point* if it lies on the circumference of some closed disk which contains no other point of $\sigma(T)$.

The set of all semibare points of $\sigma(T)$ will be denoted by $SB(\sigma(T))$. We decompose T=UR, polar decomposition of T. In this paper we

^{*)} Faculty of Engineering, Ibaraki University, Hitachi.

^{**)} Tennoji Senior High School, Osaka.