189. On Spaces which Admit Closure-Preserving Covers by Compact Sets

By Yûkiti KATUTA

(Comm. by Kenjiro SHODA, M. J. A., Dec. 12, 1974)

Let X be a T_1 -space which admits a closure-preserving closed cover \mathcal{F} by compact subsets. In [9], H. Tamano raised the question of whether or not such a space X must be paracompact. H. B. Potoczny gave in [6] a negative answer to this question, and proved in [7] that such a space X is paracompact whenever it is collectionwise normal.

In the same paper [7], he has stated that if each member of \mathcal{F} is a finite subset then X is θ -refinable, and if, in addition, there is a positive integer n such that each member of \mathcal{F} has no more than n points then X is metacompact. Moreover, he has conjectured that X must be always metacompact or θ -refinable without such severe restrictions.

In this paper, we shall give a solution to this problem.

Theorem 1. If a T_1 -space X has a closure-preserving closed cover \mathcal{F} by compact subsets, then X is metacompact.

It is known that a metacompact, collectionwise normal space is paracompact ([3] or [5]); consequently the above result of Potoczny follows immediately from our Theorem 1.

We need some lemmas to prove Theorem 1. A space X is said to be $almost\ expandable\ [8]$, if for every locally finite collection $\{F_{\alpha}|\alpha\in A\}$ of subsets of X there exists a point-finite collection $\{G_{\alpha}|\alpha\in A\}$ of open subsets of X such that $F_{\alpha}\subset G_{\alpha}$ for every $\alpha\in A$; every metacompact space is almost expandable ([8]). A cover U of a space is said to be directed, if for two members U and V of U there is a member U of U such that $U\cup V\subset W$.

The following lemma is an immediate consequence of [2, Theorem 2.2] (announced in [1]).

Lemma 1. If every directed open cover of a space X has a cushioned refinement, then X is almost expandable.

Lemma 2. If a space X has a closure-preserving closed cover \mathcal{F} by compact subsets, then X is almost expandable.

Proof. Let \mathcal{U} be a directed open cover of X. Since each member of \mathcal{F} is compact, we can easily prove that \mathcal{F} refines \mathcal{U} . Furthermore \mathcal{F} is a closure-preserving closed cover, so that \mathcal{F} is a cushioned refinement of \mathcal{U} ([4]). Hence, by Lemma 1, X is almost expandable.