135. Tensor Products of Positive Definite Quadratic Forms

By Yoshiyuki KITAOKA
Department of Mathematics, Nagoya University
(Communicated by Kenjiro Shoda, M. J. A., Nov. 12, 1976)

Let L, M, N be positive definite quadratic lattices over Z. Our aim is to give some affirmative answers for the following two problems:

- i) If M, N are indecomposable, then is $M \otimes N$ indecomposable?
- ii) If $L \otimes M$ is isometric to $L \otimes N$, then is M isometric to N?

Definitions and notations. By a positive definite quadradic lattice we mean a lattice L of a positive definite quadratic space V over the rational number field Q (rank $L=\dim V$).

Let L be a positive definite quadradic lattice; then m(L) denotes $\min Q(x)$, where Q is the quadratic form of L and x runs over non-zero elements of L, and moreover we call an element x of L a minimal vector of L if Q(x)=m(L). $\mathfrak{m}(L)$ denotes the set of all minimal vectors of L, and \tilde{L} is by definition the submodule of L spanned by all minimal vectors of L.

Let L, M be positive definite quadratic lattices with bilinear forms B_L, B_M respectively. Then the tensor product $L \otimes M$ over Z is a positive definite quadratic lattice with bilinear form B such that $B(x_1 \otimes y_1, x_2 \otimes y_2) = B_L(x_1, x_2)B_M(y_1, y_2)$ for any $x_i \in L$, $y_i \in M$.

Through this note Q(x), B(x, y) denote quadratic forms and corresponding bilinear forms (2B(x, y) = Q(x+y) - Q(x) - Q(y)), and notations and terminologies will be those of O'Meara [2].

§ 1. Positive definite quadratic lattices of E-type and their properties.

Definition. Let L be a positive definite quadratic lattice. We say that L is of E-type if every minimal vector of $L \otimes M$ is of the form $x \otimes y \ (x \in L, y \in M)$ for any positive definite quadratic lattice M.

Theorem. (i) If L_1, L_2 are of E-type*, then $L_1 \perp L_2$, $L_1 \otimes L_2$ are of E-type.

- (ii) If L is of E-type and if L_1 is a submodule of L with $m(L_1) = m(L)$, then L_1 is of E-type.
- (iii) If L is a positive definite quadratic lattice such that either $m(L) \leq 6$ and the scale sL of $L \subseteq \mathbb{Z}$, or rank $L \leq 42$, then L is of E-type. This is proved in [1].
 - § 2. Theorem. Let L be an indecomposable positive definite

^{*)} When we say that L is of E-type, L is assumed to be a pointive definite quadratic lattice.