148. On Some Properties of Meromorphic Functions.

By Tatsujiro SHIMIZU.

Mathematical Institute, Imperial University, Tokyo.

(Rec. Nov. 10, 1926. Comm. by T. TAKAGI, M.I.A., Nov. 12, 1926.)

Consider a class C of meromorphic functions

$$f(z) = \sum_{n=0}^{\infty} b_n z^n / \sum_{n=0}^{\infty} c_n z^n, \qquad (1)$$

where $\sum_{n=0}^{\infty} b_n z^n$ and $\sum_{n=0}^{\infty} c_n z^n$ are integral functions with the following properties:

- 1) $|b_0| > \varepsilon > 0$, $|c_0| > \varepsilon' > 0$, and $|b_0 c_0| > \varepsilon'' > 0$, (2)
- 2) $|b_n| < L_n$ and $|c_n| < L'_n$ for n=0, 1, 2, (3)

where L_n and L'_n are positive numbers such that $\sum_{n=0}^{\infty} L_n z^n$ and $\sum_{n=0}^{\infty} L'_n z^n$ are also integral functions,

3) of the two sets of inequalities

i)
$$0 < l_n < |b_n|$$
 for $n = n_1, n_2, \dots$
ii) $0 < l'_{n'} < |c_{n'}|$ for $n' = n'_1, n'_2, \dots$ (4)

where l_n and $l'_{n'}$ are any positive constants for a given sequence of suffixes $n=n_1, n_2, \dots$ and $n'=n'_1, n'_2, \dots$ respectively, at least one is satisfied.

Then we have the following

Theorem: There exists an infinite number of concentric ring-regions $|z| < R_1$ and $R_i < |z| < R_{i+1}$ $(i=1, 2, \dots)$, R_i depending only on the class C, in which all the functions (1) take at least p times the value 1, or q times zero, or have r poles.

Proof.⁽¹⁾ From (2) and (3) it follows that

$$|f^{(n)}(0)| < L''_n \text{ for } n=0, 1, 2, \dots$$
 (5)

where L'_n are finite quantities depending on L_n , L'_n and ϵ' . First, there

¹⁾ A more detailed proof and allied theorems will appear in Proc. Phy-Math. Soc. Japan, Ser. (3), 8 (1926).