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1 Introduction

The celebrated 100-year old Phragmén-Lindelof theorem, [19, 20], is a far reaching
extension of the maximum modulus theorem for holomorphic functions. In its
simplest form, it can be stated as follows:

Theorem 1.1. Let () C C be a simply connected domain whose boundary contains the
point at infinity. If f is a bounded holomorphic function on Q and limsup, ,, [f(z)| <

M at each finite boundary point zy, then |f(z)| < M forall z € Q.

The term Phragmén-Lindel6f also applies to a number of variations of this
result, which guarantee a bound for holomorphic functions, when conditions are
known on their growth. The two most famous variations deal with functions
which are holomorphic in an angle or in a strip, and they can be stated as follows
(see, for instance, [4, 17] as well as [1, 12]).

Theorem 1.2. Let f be a holomorphic function on an angle Q) of opening . Suppose
f is continuous up to the boundary and such that, for some p < a, |f(z)| < exp(|z|?)
asymptotically. If there exists an M > 0 such that |f| < M in 9Q) then |f| < M in Q.

Theorem 1.3. Let f be a holomorphic function on a strip Q) of width 27y, continuous up

to the boundary. Suppose that | f(z)| < N exp(eX?l) in Q) for some positive constants N
and k < 3. If there exists an M > 0 such that |f| < M inoQ then |f| < Min Q.
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