The sets closest to ovoids in $Q^{-}(2n+1,q)$

Klaus Metsch

1 Introduction

An *ovoid* of a polar space is a set of points with the property that every maximal subspace contains exactly one point of it. The existence of ovoids in polar spaces was studied extensively, see for example [5, 2, 3, 4] and the overview in [1, Appendix VI]. Clearly, if a polar space contains an ovoid \mathcal{O} , then $|\mathcal{O}|$ is the minimum size of a set of points that meets every maximal subspace of that polar space.

By $Q^{-}(2n+1,q)$ we denote the elliptic quadric of PG(2n+1,q). An ovoid of $Q^{-}(2n+1,q)$ has $q^{n+1}+1$ points [1]. However, Thas [5] has shown that $Q^{-}(2n+1,q)$ has no ovoids for $n \geq 2$. We will improve this result by showing that $q^{n+1} + q^{n-1}$ is the minimum cardinality of a set of points that meets every maximal subspace of $Q^{-}(2n+1,q)$. More precisely, we prove the following theorem.

Theorem 1.1 Let B be a set of points of $Q = Q^{-}(2n+1,q)$ such that every maximal subspace of Q has a point in B. Let \perp be the related polarity of PG(2n+1,q). Then $|B| \ge q^{n+1} + q^{n-1}$ with equality if and only if $B = (U^{\perp} \setminus U) \cap Q$ for a subspace U of dimension n-2 with $U \subseteq Q$.

If U is a subspace of Q of dimension n-2, then the set $B := (U^{\perp} \setminus U) \cap Q$ meets all maximal subspaces of Q. For, if S is a maximal subspace of Q, then $\dim(S \cap U^{\perp}) = 1 + \dim(S \cap U)$ and thus $S \cap U \neq \emptyset$.

Notice that the quotient space U^{\perp}/U is a 3-space and that Q induces a $Q^{-}(3,q)$ on this 3-space (that is the set $\{\langle U, P \rangle \mid P \in (U^{\perp} \setminus U) \cap Q\}$ is a $Q^{-}(3,q)$ of U^{\perp}/U). Thus $B := (U^{\perp} \setminus U) \cap Q$ has cardinality $(q^{2} + 1)q^{n-1}$.

Bull. Belg. Math. Soc. 5 (1998), 389-392

Received by the editors August 1997.

Communicated by James Hirschfeld.

¹⁹⁹¹ Mathematics Subject Classification. 51E20,51E21.

Key words and phrases. Ovoid, quadric, polar space.