The sets closest to ovoids in $Q^{-}(2 n+1, q)$

Klaus Metsch

1 Introduction

An ovoid of a polar space is a set of points with the property that every maximal subspace contains exactly one point of it. The existence of ovoids in polar spaces was studied extensively, see for example [5, 2, 3, 4] and the overview in [1, Appendix VI]. Clearly, if a polar space contains an ovoid \mathcal{O}, then $|\mathcal{O}|$ is the minimum size of a set of points that meets every maximal subspace of that polar space.

By $Q^{-}(2 n+1, q)$ we denote the elliptic quadric of $\operatorname{PG}(2 n+1, q)$. An ovoid of $Q^{-}(2 n+1, q)$ has $q^{n+1}+1$ points [1]. However, Thas [5] has shown that $Q^{-}(2 n+1, q)$ has no ovoids for $n \geq 2$. We will improve this result by showing that $q^{n+1}+q^{n-1}$ is the minimum cardinality of a set of points that meets every maximal subspace of $Q^{-}(2 n+1, q)$. More precisely, we prove the following theorem.

Theorem 1.1 Let B be a set of points of $Q=Q^{-}(2 n+1, q)$ such that every maximal subspace of Q has a point in B. Let \perp be the related polarity of $\mathrm{PG}(2 n+1, q)$. Then $|B| \geq q^{n+1}+q^{n-1}$ with equality if and only if $B=\left(U^{\perp} \backslash U\right) \cap Q$ for a subspace U of dimension $n-2$ with $U \subseteq Q$.

If U is a subspace of Q of dimension $n-2$, then the set $B:=\left(U^{\perp} \backslash U\right) \cap Q$ meets all maximal subspaces of Q. For, if S is a maximal subspace of Q, then $\operatorname{dim}\left(S \cap U^{\perp}\right)=1+\operatorname{dim}(S \cap U)$ and thus $S \cap U \neq \emptyset$.

Notice that the quotient space U^{\perp} / U is a 3 -space and that Q induces a $Q^{-}(3, q)$ on this 3 -space (that is the set $\left\{\langle U, P\rangle \mid P \in\left(U^{\perp} \backslash U\right) \cap Q\right\}$ is a $Q^{-}(3, q)$ of $\left.U^{\perp} / U\right)$. Thus $B:=\left(U^{\perp} \backslash U\right) \cap Q$ has cardinality $\left(q^{2}+1\right) q^{n-1}$.

[^0]
[^0]: Received by the editors August 1997.
 Communicated by James Hirschfeld.
 1991 Mathematics Subject Classification. 51E20,51E21.
 Key words and phrases. Ovoid, quadric, polar space.

