Convergence of difference analogues to the Darboux problem with functional dependence

H. Leszczyński

Abstract

We consider the Darboux problem with functional dependence for z, $D_x z$ and $D_y z$ on the right-hand side of the differential equation. We investigate a wide class of difference schemes for the differential-functional problem. In the present paper we prove convergence theorems by means of consistency and stability statements.

1 Introduction

Take a, b > 0 and $\alpha, \beta \ge 0$. Define $E = [0, a] \times [0, b], E^0 = [-\alpha, a] \times [-\beta, b] \setminus (0, a] \times (0, b]$, and $B = [-\alpha, 0] \times [-\beta, 0]$ Given a function $z : E^0 \cup E \to R$ and a point $(x, y) \in E$, we define the functional $z_{(x,y)} : B \to R$ by $z_{(x,y)}(\xi, \eta) = z(x + \xi, y + \eta)$ for $(\xi, \eta) \in B$. Suppose that we are given a function $f : \Omega := E \times X_0 \times X_1 \times X_2 \to R$, where X_0, X_1, X_2 are some subsets of the set of all functions from B to R. Take a differentiable function $\phi : E^0 \to R$. Consider the Darboux problem

$$D_{xy}z(x,y) = f(x,y,z_{(x,y)},(D_xz)_{(x,y)},(D_yz)_{(x,y)}),$$
(1)

$$z(x,y) = \phi(x,y), \qquad (x,y) \in E^0.$$
 (2)

We will assume that there exists a classical solution to problem (1), (2), i.e. a continuous function $v: E^0 \cup E \to R$ which satisfies (2) on E^0 , is of class C^2 on E, and satisfies (1) on the set E.

Received by the editors October 1996.

Communicated by A. Bultheel.

1991 Mathematics Subject Classification: 35R10, 35A40, 65M12.

Key words and phrases: Darboux problem, differential-functional equation, finite difference schemes, stability and convergence.