An Interesting Example for a Three-Point Boundary Value Problem.

Chaitan P. Gupta

Sergej I. Trofimchuk

Abstract

Let $\alpha, A \in R, \eta \in(0,1)$, and $e(t) \in L^{1}[0,1]$ be given. Further, let $p(t)$, $q(t)$ be given functions such that $p(t) \geq 0, q(t) \geq 0$ for $t \in[0,1]$. This paper concerns the three point boundary-value problem $$
\begin{gather*} x^{\prime \prime}(t)=p(t) x(t)+A q(t) x^{\prime}(t)+e(t), 0<t<1, \tag{1}\\ x(0)=0, x(1)=\alpha x(\eta) . \tag{2} \end{gather*}
$$

This problem of existence of a solution for this boundary value problem was studied earlier by Gupta, Gupta-Trofimchuk with $p(t)=q(t)=t^{-\frac{1}{4}}$ for various values of α and η. Existence of a solution for this boundary value problem were given for A near zero. When $\alpha=2$ and $\eta=.6$ Gupta-Trofimchuk were not able to show in [6] that a solution to this boundary value problem exists for any A. In this paper we show that given α, η, there exists an A_{1}, such that for $A_{1}<A<\infty$, the three-point boundary value problem (1)-(2) has a unique solution. Further if $\alpha \leq 1$ then the three-point boundary value problem (1)(2) has a unique solution for all $A \in R$. This is done as an application of a sharpened existence condition given by the authors earlier for such threepoint boundary value problems. The authors made extensive use of computer algebra systems like Maple and MathCad.

[^0]
[^0]: Received by the editors April 1999.
 Communicated by J. Mawhin.
 1991 Mathematics Subject Classification : 34B10, 34B15.
 Key words and phrases : Dirichlet type multi-point boundary value problem, three-point boundary value problem, Leray Schauder Continuation theorem, Caratheodory's conditions, Arzela-Ascoli Theorem, Maple, MathCad.

