On nonlinear hyperbolic problems with nonlinear boundary feedback

Mohammed Aassila Marcelo M. Cavalcanti

Abstract

In this paper we prove the existence, uniqueness and uniform decay of strong and weak solutions of the nonlinear model of the wave equation

$$u_{tt} - \Delta u + f(u) + h(\nabla u) = 0$$

in bounded domains with nonlinear dissipative boundary conditions given by

$$\frac{\partial u}{\partial \nu} + g(u_t) = 0.$$

The existence is proved by means of Faedo-Galerkin method and the asymptotic behavior is obtained making use of the multiplier technique due to Komornik and Zuazua .

1 Introduction

Consider the nonlinear wave equation with a nonlinear boundary dissipative term

(*)
$$\begin{cases} u_{tt} - \Delta u + f(u) + h(\nabla u) = 0 \quad \text{in} \quad \Omega \times (0, \infty), \\ u = 0 \quad \text{on} \quad \Gamma_1 \times (0, \infty), \\ \frac{\partial u}{\partial \nu} + g(u_t) = 0 \quad \text{on} \quad \Gamma_0 \times (0, \infty), \\ u(x, 0) = u^0(x); \quad u_t(x, 0) = u^1(x) \quad \text{in} \quad \Omega, \end{cases}$$

where Ω is a bounded domain of \mathbf{R}^n , $n \geq 1$, with a smooth boundary $\Gamma = \Gamma_0 \cup \Gamma_1$. Here, Γ_0 and Γ_1 are closed and disjoint, ν represents the unit outward normal

Bull. Belg. Math. Soc. 7 (2000), 521-540

Received by the editors March 1999.

Communicated by P. Laubin.