Recognizing $Q_{p,0}$ Functions per Dirichlet Space Structure

K.J. Wirths J. Xiao^{*}

Abstract

Under $p \in (0, \infty)$ and Möbius map $\sigma_w(z) = (w-z)/(1-\bar{w}z)$, a holomorphic function on the unit disk \triangle is said to be of $\mathcal{Q}_{p,0}$ class if $\lim_{|w|\to 1} E_p(f,w) = 0$, where

$$E_p(f,w) = \int_{\Delta} |f'(z)|^2 [1 - |\sigma_w(z)|^2]^p dm(z),$$

and where dm means the element of the Lebesgue area measure on \triangle . In particular, $\mathcal{Q}_{p,0} = \mathcal{B}_0$, the little Bloch space for all $p \in (1, \infty)$, $\mathcal{Q}_{1,0} = VMOA$ and $\mathcal{Q}_{p,0}$ contains \mathcal{D} , the Dirichlet space. Motivated by the linear structure of \mathcal{D} , this paper is devoted to: first show that $\mathcal{Q}_{p,0}$ is a Möbius invariant space in the sense of Arazy-Fisher-Peetre; secondly identify $\mathcal{Q}_{p,0}$ with the closure of all polynomials; thirdly characterize the extreme points of the unit closed ball of $\mathcal{Q}_{p,0}$; and finally investigate the semigroups of the composition operators on $\mathcal{Q}_{p,0}$.

Introduction

Let \triangle and $\partial \triangle$ be the unit disk and the unit circle in the finite complex plane \mathbb{C} . Denote by \mathcal{H} the set of functions holomorphic on \triangle , endowed with the topology of the compact-open (i.e. the uniform convergence on compact subsets of \triangle). The

Received by the editors $\,$ February 2000.

1991 Mathematics Subject Classification : 30D45, 32A37, 46E15, 47B33.

Key words and phrases : $Q_{p,0}$, Möbius invariance, polynomial density, extreme points, composition semigroups.

Bull. Belg. Math. Soc. 8 (2001), 47-59

^{*}Project supported by the AvH-Foundation of Germany as well as the NNSF (19771006) and SEC of China.

Communicated by J. Delanghe.