Octonion hermitian quadrangles

Linus Kramer

Abstract

We introduce hermitian generalized quadrangles over the octonions. These quadrangles extend the classical hermitian quadrangles over the reals, the complex numbers and the quaternions in a natural way. For the smallest quadrangle, $H_3\mathbb{O}$, we show that the group Spin(9) acts as a line-transitive automorphism group.

Introduction

Octonions or Cayley division algebras are complex and beautiful objects which are, unfortunately, absent in finite geometry. They can be used to construct a family of particularly nice generalized quadrangles. The smallest of these quadrangles, $H_3\mathbb{O}$, has a line-transitive automorphism group. These quadrangles generalize and extend in a natural way the classical standard hermitian quadrangles over the reals, the complex numbers, or the quaternions. They where first described by Ferus-Karcher-Münzner [1] in connection with Clifford algebras and isoparametric hypersurfaces; later, Thorbergsson [7] proved by a topological argument that they are quadrangles.

We here take a different approach to these quadrangles: instead of real Clifford algebras we use the octonions, and we give an algebraic proof that the geometries are quadrangles. The approach via Clifford algebras can be found in [2]. It should be said that although the quadrangles originate from differential and topological geometry, the whole construction is purely algebraic and works whenever the field \mathbb{R} of real numbers is replaced by a real closed field.

Bull. Belg. Math. Soc. 5 (1998), 353-362

Received by the editors August 97.

Communicated by Hendrik Van Maldeghem.

¹⁹⁹¹ Mathematics Subject Classification. 51H15,51H30,51E12,17D05,11E88.

Key words and phrases. Octonions, Clifford algebras, generalized quadrangles, isoparametric hypersurfaces, Cayley planes.