Newton Polyhedra and the Poles of Igusa's Local Zeta Function

Kathleen Hoornaert

Abstract

We give a very explicit formula for Igusa's local zeta function $Z_{f}(s, \chi)$ associated to a polynomial f in several variables over the p-adic numbers and to a character χ of the units of the p-adic integers (with conductor 1). This formula holds when f is sufficiently non-degenerated with respect to its Newton polyhedron $\Gamma(f)$. Using this formula, we give a set of possible poles of $Z_{f}(s, \chi)$, together with upper bounds for their orders. Moreover this formula implies that $Z_{f}(s)=Z_{f}\left(s, \chi_{\text {triv }}\right)$ has always at least one real pole.

1 Introduction

For p prime, denote the field of p-adic numbers by \mathbb{Q}_{p}, the ring of p-adic integers by \mathbb{Z}_{p}, and the finite field of p elements by \mathbb{F}_{p}. If R is a commutative ring with identity, we will denote the set of its units by R^{\times}.

Definition 1.1. Let $f(x)=f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{p}\left[x_{1}, \ldots, x_{n}\right]$ with p prime. For $z \in$ \mathbb{Q}_{p}, ord $z \in \mathbb{Z} \cup\{\infty\}$ denotes the valuation, $|z|=p^{\text {-ord } z}$ and $\operatorname{ac}(z)=p^{-\operatorname{ord} z} z$ denotes the angular component. Let $\chi: \mathbb{Z}_{p}^{\times} \rightarrow \mathbb{C}^{\times}$be a character of \mathbb{Z}_{p}^{\times}, i.e., a group homomorphism with finite image. We formally put $\chi(0)=0$. To the above data we associate the following two Igusa local zeta functions (the global and the local one):

[^0]
[^0]: Received by the editors December 2001.
 Communicated by M. Van den Bergh.
 1991 Mathematics Subject Classification : 11S40, 11D79, (14M25, 52B20, 14 G10).
 Key words and phrases : Igusa zeta function, Newton polyhedron, congruences, p-adic integrals.

