Newton Polyhedra and the Poles of Igusa's Local Zeta Function

Kathleen Hoornaert

Abstract

We give a very explicit formula for Igusa's local zeta function $Z_f(s, \chi)$ associated to a polynomial f in several variables over the p-adic numbers and to a character χ of the units of the p-adic integers (with conductor 1). This formula holds when f is sufficiently non-degenerated with respect to its Newton polyhedron $\Gamma(f)$. Using this formula, we give a set of possible poles of $Z_f(s, \chi)$, together with upper bounds for their orders. Moreover this formula implies that $Z_f(s) = Z_f(s, \chi_{triv})$ has always at least one real pole.

1 Introduction

For p prime, denote the field of p-adic numbers by \mathbb{Q}_p , the ring of p-adic integers by \mathbb{Z}_p , and the finite field of p elements by \mathbb{F}_p . If R is a commutative ring with identity, we will denote the set of its units by R^{\times} .

Definition 1.1. Let $f(x) = f(x_1, \ldots, x_n) \in \mathbb{Z}_p[x_1, \ldots, x_n]$ with p prime. For $z \in \mathbb{Q}_p$, ord $z \in \mathbb{Z} \cup \{\infty\}$ denotes the valuation, $|z| = p^{-\operatorname{ord} z}$ and $\operatorname{ac}(z) = p^{-\operatorname{ord} z} z$ denotes the angular component. Let $\chi : \mathbb{Z}_p^{\times} \to \mathbb{C}^{\times}$ be a character of \mathbb{Z}_p^{\times} , i.e., a group homomorphism with finite image. We formally put $\chi(0) = 0$. To the above data we associate the following two Igusa local zeta functions (the global and the local one):

Bull. Belg. Math. Soc. 9 (2002), 589-606

Received by the editors December 2001.

Communicated by M. Van den Bergh.

¹⁹⁹¹ Mathematics Subject Classification : 11S40, 11D79, (14M25, 52B20, 14 G10).

Key words and phrases : Igusa zeta function, Newton polyhedron, congruences, p-adic integrals.