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Introduction

The alternating Schouten product was studied in a totally algebraic way
in Bhaskara and Vismanath [3]. In this paper we shall be first concerned
with this product and show that [P,Q] =0 if and only if [P,Q] =0 and
(p — 1) Alt (P ® Q) = 0 for alternating multiderivations P and Q of degree p and
g — 1 respectively, where Q = Alt (qQ) is an alternating multilinear map of
degree q (Theorem 2).

We shall then study an extension of a Poisson algebra by an derivation
which is the abstract concept of a generalized Poisson algebra introduced by
Berezin [2], while Kubo and Mimura [4] and Kubo [5] worked on abstract
Poisson algebras, especially Poisson Lie structures on some polynomial algebras
and their factor algebras. Let F be a Poisson algebra with bracket [,] and
D a derivation of the associative algebra F. We define a D-extension (F, {,))
of F whose bracket {,) on F is given by <a, b) = [a, b] + D(a)b — aD(b) for
a, be F. By using Theorem 2 we give an equivalent condition to that an
algebra (F, {,>) is a Lie algebra. Then we consider an extension of a Poisson
algebra constructed from the three dimensional split simple Lie algebra.

Throughout this paper let f be a field of characteristic zero and F a
commutative associative algebra over f with unit.
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Alternating Schouten products of multiderivations

Notations and terminology are based on Bhaskara and Viswanath [3].
For the sake of convenience we list the terms that we use here.

For p 2 1, we denote by L,(F) the set of all multilinear maps of F into
itself of degree p. We define Ly(F) = F and L_,(F) = 0.
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