Kirillov-Kostant theory and Feynman path integrals on coadjoint orbits II

Hisatoshi YASUNAGA (Received March 25, 1991)

Introduction

Let G be a connected and simply connected solvable Lie group. In this paper we construct irreducible unitary representations of G by using the Feynman path integrals on coadjoint orbits [1][13].

In §1, we compute the path integrals on $M = \mathbb{R}^n \times \mathbb{R}^n$. Let θ be a 1-form on M and H a C^{∞} -function on M which satisfies certain conditions. The path integral $K_{\theta,H}(x^n, x^i; T)$ $(x^i, x^n \in \mathbb{R}^n)$ computed by using the action $\int_0^T \gamma^* \theta - H(\gamma(t)) dt$ (where γ runs over a certain set of paths on M) can be written by the solution of differential equations defined by θ and H.

In §2, we investigate the path integrals on coadjoint orbits. Let g be the Lie algebra of G and g* the dual space of g. Fix an element λ of g* and choose a real polarization p. Following the Kirillov-Kostant theory [4][5][14], we construct an irreducible unitary representation π_{λ}^{p} of G. We put $\theta_{\lambda} = \langle \lambda, g^{-1} dg \rangle$ and $H_{Y} = \langle \lambda, g^{-1} Yg \rangle$ for any $Y \in g$. We show that the integral operator of $K_{\theta_{\lambda}, H_{Y}}$ corresponds to $\pi_{\lambda}^{p}(exp TY)$.

§1 Path integrals on $\mathbb{R}^n \times \mathbb{R}^n$

In this section, we shall compute the Feynman path integrals on $M = \mathbf{R}^n \times \mathbf{R}^n$. Let n_1, \ldots, n_m be natural numbers such that $\sum_{i=1}^m n_i = n$. We put $U^i = \mathbf{R}^{n_i}$ and $V^i = \mathbf{R}^{n_i}$ for $i = 1 \cdots m$. Let ${}^t(x, y) = {}^t(x^1 \cdots x^m y^1 \cdots y^m)$ be the normal coordinates on $M = U^1 \times \cdots \times U^m \times V^1 \times \cdots \times V^m$ where $x^i = {}^t(x^{i,1} \cdots x^{i,n_i}) \in U^i$ and $y^i = {}^t(y^{i,1} \cdots y^{i,n_i}) \in V^i$ for $i = 1 \cdots m$. Let θ be a 1-form on M and H a C^{∞} -function on M. Suppose that θ and H are expressed in the following forms respectively:

$$\theta = \sum_{i=1}^{m} {}^{t} y^{i} (dx^{i} + \sum_{j=1}^{i-1} f^{ij} dx^{j}) + {}^{t} a^{i} dx^{i} + {}^{t} b^{i} dy^{i}$$
(1.1)

where