Note on a Characterization of Solvable Lie Algebras

Morikuni Goto

(Received January 24, 1962)

By a Lie algebra we mean a finite-dimensional Lie algebra over a field of characteristic 0. Our main purpose in this note is to establish the following Theorem.

THEOREM.¹⁾ Let g be a Lie algebra. If there exist nilpotent subalgebras n_1 and n_2 with $n_1+n_2=g$, then g is solvable, and vice versa.

The proof of the Theorem depends on the following Lemma.

LEMMA. Let \mathfrak{S} be a semi-simple Lie algebra, and let \mathfrak{n} be a nilpotent subalgebra of \mathfrak{S} . Let r be the dimension of \mathfrak{S} , and let l be the rank of \mathfrak{S} . Then we have the following inequality:

$$2 \dim \mathfrak{n} \leq r-l.$$

About the concept and results in the theory of Lie algebras, used in this note, the reader may refer: e.g. C. Chevalley, Théorie des groupes de Lie, t. III, Hermann, Paris, 1955.

(A) Proof of the Lemma

Let \mathfrak{s} be a semi-simple Lie algebra over an algebraically closed field. Let n be a nilpotent subalgebra of \mathfrak{s} . We use the notation $\operatorname{ad}(X)Y = [X, Y]$ for X, $Y \in \mathfrak{s}$. An element X is said to be *semi-simple* if $\operatorname{ad}(X)$ is a semi-simple linear transformation on \mathfrak{s} . Let A be a semi-simple element in n. Since $\operatorname{ad}(X)$, restricted on n, is nilpotent for any X in n, we have $\operatorname{ad}(A) = 0$ on n, i.e. A is in the center of n. We denote by a the set of all semi-simple elements in n. Then a is a central ideal of n.

Let m be a maximal solvable subalgebra of \mathfrak{S} containing n. We can find a Cartan subalgebra \mathfrak{h} of \mathfrak{S} such that

 $m \supset \mathfrak{h} \supset \mathfrak{a}$.

Since any element of \mathfrak{h} is semi-simple, we have $\mathfrak{n} \cap \mathfrak{h} = \mathfrak{a}$. Next, because \mathfrak{a} is a commutative subalgebra composed of semi-simple elements, we obtain a decomposition of \mathfrak{m} into submoduli:

$$m = m_1 + m_2, m_1 \cap m_2 = \{0\},$$

[a, m_1] = $\{0\}, \text{ and } [a, m_2] = m_2$

¹⁾ It seems that the question whether the theorem is true or not had been raised originally by Otto H. Kegel and the author was inquired about this by S. Tôgô.