On Support Theorems

Shigeaki Tôgô (Received March 1, 1965)

1. Introduction. Let R_n be the n dimensional Euclidean space and let Ξ_n be the dual of R_n . The elements of R_n and Ξ_n are sequences $x = (x_1, x_2, \dots, x_n)$ and $\xi = (\xi_1, \xi_2, \dots, \xi_n)$ of real numbers. We put

$$D = (D_1, D_2, \dots, D_n)$$
 with $D_j = \frac{1}{i} \frac{\partial}{\partial x_j}$ $(j = 1, 2, \dots, n)$.

For convenience' sake we use the notations:

$$x = (x', t),$$
 $x' = (x_1, x_2, ..., x_{n-1}),$ $t = x_n,$ $\xi = (\xi', \tau),$ $\xi' = (\xi_1, \xi_2, ..., \xi_{n-1}),$ $\tau = \xi_n$ $D_{x'} = (D_1, D_2, ..., D_{n-1}),$ $D_t = D_n.$

We denote by \mathcal{Z}_{n-1} the n-1 dimensional space consisting of elements ξ' .

Let \mathcal{D} , \mathscr{S} and \mathcal{O}_M be the spaces of all C^{∞} -functions with compact supports, all rapidly decreasing C^{∞} -functions and all slowly increasing C^{∞} -functions on R_n respectively. These spaces are provided with usual topologies of L. Schwartz [4]. Let \mathcal{D}' and \mathscr{S}' be the strong duals of \mathcal{D} and \mathscr{S} respectively and let \mathcal{O}'_C be the space of all rapidly decreasing distributions. We shall denote by $\mathcal{O}_M(\mathcal{E}_{n-1})$ the space \mathcal{O}_M considered on \mathcal{E}_{n-1} . By the partial Fourier transform of $T \in \mathscr{S}'$ we understand the Fourier transform of T with respect to the first n-1 variables which will be denoted by $\hat{T}(\xi', t)$.

For any $A(\xi') \in \mathcal{O}_M(\mathcal{Z}_{n-1})$, we define the operator $A(D_{x'})$ on \mathscr{S}' as follows: The partial Fourier transform of $A(D_{x'})$ T, $T \in \mathscr{S}'$, is $A(\xi')$ $\hat{T}(\xi', t)$. In this paper we are concerned with the operator of the following form:

$$F(D_{x'},D_t) = D_t^m + A_1(D_{x'})D_t^{m-1} + \dots + A_m(D_{x'})$$
 with $A_j(\hat{\xi}') \in \mathcal{O}_M(\Xi_{n-1})$ $(j=1,\,2,\,\dots,\,m)$ and $m \geq 1$.

J. Peetre observed in [2, 3] that the operator

$$D_t - i(1 + \sum_{j=1}^{n-1} D_j^2)^{1/2}$$