On Finite Geometries and Cyclically Generated Incomplete Block Designs

Sumiyasu YAMAMOTO, Teijiro FUKUDA and Noboru HAMADA (Received September 20, 1966)

1. Introduction

C. R. Rao [3], [4] generalized certain theorems known as the difference theorems of R. C. Bose [1] and derived a method of constructing difference sets which cyclically generate balanced incomplete block (BIB) designs. The main results were derived with the help of a compact representation of d dimensional linear subspaces (flats) in a t(>d) dimensional finite projective space and also in Euclidean space. The notion of the cycle of a flat was introduced there in order to investigate the structure of the family of flats and the following general propositions were conjectured:

PROPOSITION 1 (Rao) In PG(t, m), if r_1, r_2, \dots, r_p are integers such that

- (a) 0<r1<r2<...<rp<t,
 (b) (m^{d+1}−1)/(m^{ri+1}−1)=si integral for all i,
 (c) (d+1)/(ri+1)=ti integral for all i,
- (d) $(r_{i+1}+1)/(r_i+1) = l_i$ integral for all *i*,
- (e) $(m^{t+1}-1)/(m^{r_i+1}-1) = \theta_i$ integral for all *i*,

then there are

$$y_i = (n_i - n_{i+1})/\theta_i$$
 where $n_i = \binom{\theta_i}{t_i} / \binom{s_i}{t_i}$

initial flats of cycle θ_i (i=1, 2, ..., p) and

$$\eta = (b - n_1)/v$$

initial flats of cycle v from which the totality of the d-flats can be generated.

PROPOSITION 2 (Rao) In EG(t, m), if $h = p_0 p_1^{i_1} p_2^{i_2} \dots (p_0 = 1 \text{ and } p$'s are primes such that $p_i < p_{i+1}$) is the highest common factor (H.C.F.) of d and t, then the d-flats passing through the origin (0) will have cycles of the form $\theta_{j_s} = (m^t - 1)/(m^{r_{j_s}} - 1)$ where

$$r_{js} = p_1^{i_1} p_2^{i_2} \cdots p_j^s$$
 $(j=0, 1, ...; s=0, 1, ..., i_j)$