A Remark on Vector Fields on Lens Spaces

Toshio Yoshida

(Received February 17, 1967)

§1. Introduction

Let M be a C^{∞} -manifold. The (continuous) vector field v on M is a crosssection of the tangent bundle of M, and k-field on M is a set of k vector fields v_1, \ldots, v_k such that the k vectors $v_1(x), \ldots, v_k(x)$ are linearly independent for each point $x \in M$. We denote by span(M) the maximal number of k where Madmits a k-field.

In this note, it is remarked that $span(L^{n}(p))$, of the (2n+1)-dimensional mod p lens space $L^{n}(p)$, is given partially by the following

PROPOSITION. Let $n+1=m2^{t}$ (m: odd), t+1=c+4d ($0 \le c \le 3$)

- (i) If c=0, then $2t+1 \leq span(L^n(p)) \leq 2t+2 (=span(S^{2n+1}))$.
- (ii) If c=1, 2, then $span(L^n(p))=2t+1$ (=span (S²ⁿ⁺¹)).
- (iii) If c=3, then $2t+1 \leq span(L^n(p)) \leq 2t+3 (=span(S^{2n+1}))$.

Here the lens space $L^{n}(p)$ (p>1) is the quotient space S^{2n+1}/Γ of the unit sphere S^{2n+1} by the topological transformation group $\Gamma = \{1, \gamma, ..., \gamma^{p-1}\}$ defined by

$$\gamma \cdot (z_0, z_1, ..., z_n) = (e^{2\pi i/p} z_0, e^{2\pi i/p} z_1, ..., e^{2\pi i/p} z_n)
onumber$$
 $((z_0, z_1, ..., z_n) \in S^{2n+1} \subset C^{n+1}).$

We notice that the above proposition holds in the following form for the case p=2:

$$span(L^n(2)) = span(S^{2n+1}).$$

This follows easily from the fact that $L^{n}(2)$ is the (2n+1)-dimensional real projective space RP^{2n+1} , and

$$span(RP^n) = span(S^n),$$

which is an immediate consequence of the fact that S^n has a linear k-field, $k = span(S^n)$.

Also, we notice that there is a lens space such that

$$span(L^n(p)) < span(S^{2n+1}),$$