Evaluation of Hausdorff Measures of Generalized Cantor Sets

Kaoru Hatano
(Received September 26, 1968)

§1. Introduction

The problem how a Hausdorff measure of a product set $A \times B$ is related to Hausdorff measures of A and B is not completely solved. This problem was first investigated by F. Hausdorff himself [3] and later by A. S. Besicovitch and P. A. P. Moran [1], J. M. Marstrand [4] and others. Their works and investigations of similar problem for capacity (e.g. [6], [7]) show that evaluation of Hausdorff measures of generalized Cantor sets supplies many clues to this problem.

In this paper we first evaluate the α-Hausdorff measure of generalized Cantor sets in the Euclidean space R^{n}. As a concequence we see the existence of a compact set in R^{n} which has infinite α-Hausdorff measure but zero α capacity $(0<\alpha<n)$. Next we estimate Hausdorff measures of product sets of one-dimensional generalized Cantor sets and then give examples which show that in case the α-Hausdorff measure of E_{1} is infinite and the β-Hausdorff measure of E_{2} is zero, the $(\alpha+\beta)$-Hausdorff measure of $E_{1} \times E_{2}$ may either be zero, positive finite or infinite. Also these examples answer M. Ohtsuka's question in [7] (p. 114) in the negative.

The author wishes to express his deepest gratitude to Professor M. Ohtsuka for his suggesting the problem and his valuable comments.

§2. Definitions and Notation

Let $R^{n}(n \geqq 1)$ be the n-dimensional Euclidean space with points $x=\left(x_{1}\right.$, x_{2}, \ldots, x_{n}). By an n-dimensional open cube (closed cube resp.) in R^{n}, we mean the set of points $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ satisfying the inequalities:

$$
a_{i}<x_{i}<a_{i}+d\left(a_{i} \leqq x_{i} \leqq a_{i}+d \text { resp. }\right) \quad \text { for } \quad i=1,2, \ldots, n,
$$

where $a_{i}(i=1,2, \ldots, n)$ are any numbers and $d>0$. We call d the length of the side, or simply the side, of the open (or closed) cube.

Let \mathfrak{A} be the family of non empty open sets in R^{n} which is determined by the following properties:
(i) any n-dimensional open cube belongs to \mathfrak{N},
(ii) if ω_{1} and ω_{2} belong to \mathfrak{N}, then so does $\omega_{1} \cup \omega_{2}$,
(iii) if ω is an element of \mathfrak{A}, then there exists a finite number of n -

