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1. Introduction

Throughout this paper D will denote an integral domain with 120 and
quotient field K, and by an overring of D will be meant a ring J such that
Dc Jc K. Anideal 4 of D is called a valuation ideal provided there exists a
valuation overring Dy of D such that ADy N D=4 ((22; 38407, [107]). If IT is
a general ring property, then we shall refer to an ideal 4 of D as a IT-ideal
provided there exists an overring J of D such that J is a IT-domain (i.e. J has
the property IT) and A=A4JnD. It is shown in [10] that if every principal
ideal of D is a valuation ideal, then D is a valuation ring. Furthermore, if
every proper ideal of D is a Dedekind ideal, then D is a Dedekind domain [ 27];
and if every proper ideal of D is a Priifer ideal, then D is a Priifer domain
[7], [10; 2387]. In this paper we are mainly concerned with the following
question. When does the statement

(a) “there exists a collection J of IT-ideals of D” imply the statement

(b) “Dis a II-domain” (i.e. D has property II)? Our main result in
this direction is that (a) implies (b) when “IT-domain” = “Krull domain” and
d is the collection of proper principal ideals of D, i.e. if every proper principal
ideal is a Krull ideal, then D is a Krull domain. The same result holds in
case “Krull domain is replaced by either “integrally closed domain” or “com-
pletely integrally closed domain”. In addition we show that (a) implies (b)
when J is the collection of proper finitely generated ideals of D and IT is any
of the following ring properties: Priifer, 1-dim. Priifer, almost Dedekind, or
Dedekind. ‘

We remark that (a) does not always imply (b), even in the case that J
is the set of all ideals of D (e.g. if IT is one of P.I.D., Bezout, or QR-property-
see Section 5).

In general we use the notation and terminology of [217] and [22]. In
particular, c denotes containment, while < denotes proper containment; and
A is a proper ideal of D provided (0)< A< D. The theorems considered in
this paper are trivial in case D is a field, so we assume throughout that D
has at least one proper ideal.
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