Parallelizability of Grassmann Manifolds

Toshio Yoshida

(Received January 13, 1975)

§1. Introduction

Let $G_{n,m}$ be the Grassmann manifold of all *m*-planes through the origin of the Euclidean *n*-space R^n . A. Neifahs [3] proved that *n* is a power of 2 if $G_{n,m}$ is parallelizable.

In this note, we prove the following

THEOREM 1.1. $G_{n,m}$ is parallelizable, i.e., the tangent bundle of $G_{n,m}$ is trivial, if and only if

$$n = 2, 4 \text{ or } 8; \quad m = 1 \text{ or } n-1.$$

To prove this theorem, we use the following theorem.

For a real vector bundle ξ , we denote by $Span\xi$ the maximum number of linearly independent cross-sections of ξ . Especially, we denote $SpanM = Span\tau M$, where τM is the tangent bundle of a C^{∞} -manifold M.

THEOREM 1.2. Let ξ_k be the canonical line bundle over the real projective k-space RP^k , and $n\xi_k$ the Whitney sum of n-copies of it. Then, $Span G_{n,m} \ge k$ implies $Span nm\xi_{n-m} \ge m^2 + k$.

The author wishes to express his hearty thanks to Professors M. Sugawara and T. Kobayashi for their valuable suggestions and discussions.

§2. Proof of Theorem 1.2

Let $\gamma_{n,m}$ be the canonical *m*-plane bundle over $G_{n,m}$, i.e., the total space of $\gamma_{n,m}$ be the subspace of $G_{n,m} \times \mathbb{R}^n$ consisting of all pairs (x, v) where $x \in G_{n,m}$ and v is a vector in x. Then, by [2, Problem 5–B],

(2.1)
$$\tau G_{n,m} \cong \operatorname{Hom}(\gamma_{n,m}, \gamma_{n,m}^{\perp}),$$

where $\gamma_{n,m}^{\perp}$ denotes the orthogonal complement of $\gamma_{n,m}$ in the trivial bundle $G_{n,m} \times \mathbb{R}^n \to G_{n,m}$.

Consider the Stiefel manifold $V_{n,m}$ of all orthonormal *m*-frames in \mathbb{R}^n , which has the involution by sending each (v_1, \ldots, v_m) to $(-v_1, \ldots, -v_m)$. By [5, Prop. 1], we see the following fact.