Dirichlet problem for a semi-linearly perturbed structure of a harmonic space

Fumi-Yuki MAEDA (Received August 31, 1981)

Introduction

In [3], the author considered a semi-linear perturbation of a harmonic space and discussed Dirichlet problems of Perron-Brelot type with respect to the perturbed structure. In the present note, we further investigate such Dirichlet problems. In §2, we are concerned with the problem whether a bounded boundary function, which is resolutive with respect to the original structure, remains resolutive with respect to the perturbed structure. Then, in §3, we give sufficient conditions for a boundary point to be regular with respect to the Dirichlet problem for the perturbed structure. The results in §3 are extensions of those in [2] where linear perturbations are treated.

As a simple but typical example to which our theory can be applied, consider a semi-linear equation

(*)
$$\Delta u = q(x)\psi(u)$$

on a domain $\Omega \subset \mathbb{R}^n$ $(n \ge 2; \Omega$: hyperbolic if n=2), where q is a non-negative function belonging to $L^r_{loc}(\Omega)$ with r > n/2 and ψ is a non-decreasing locally Lipschitz-continuous function on \mathbb{R} such that $\psi(t_0)=0$ for some $t_0 \in \mathbb{R}$. For a compactification Ω^* of Ω and a bounded function φ on $\Omega^* \setminus \Omega$ which is resolutive with respect to $\Delta u = 0$, our theorems in §2 imply the following results:

(i) Without any further assumptions on ψ , if $\varphi \ge t_0$ or $\varphi \le t_0$, then φ is resolutive with respect to (*);

(ii) If either ψ^+ or ψ^- is convex, then φ is always resolutive with respect to (*).

As to regularity, our results in § 3 show that $\xi \in \Omega^* \setminus \Omega$ is regular with respect to the Dirichlet problem for (*) if it is regular for $\Delta u = 0$ and if there exist an open neighborhood V of ξ in Ω^* and a potential p on $V \cap \Omega$ such that $p(x) \rightarrow 0$ as $x \rightarrow \xi$ and $\Delta p = -q$ on $V \cap \Omega$. Note that these conditions do not refer to the function ψ .

§1. Notation and basic assumptions

Let (X, \mathscr{U}) be a harmonic space in the sense of Constantinescu-Cornea [1]